Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)
-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)
2) ta có \(\frac{a}{b}=\frac{c}{d}\)
đặt a=kb và c=kd
\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)
ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(1\right)\)
mà \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
Từ (1) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)
ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\Rightarrow\frac{\left(a+b^2\right)}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)
1) a) Ta có: \(\frac{x}{-15}=\frac{-60}{x}\) \(\Rightarrow x^2=\left(-15\right).\left(-60\right)=900\)
\(\Rightarrow x=30\)
b) \(\frac{-2}{x}=\frac{-x}{\frac{8}{25}}\) \(\Rightarrow x.\left(-x\right)=\left(-2\right).\frac{8}{25}\)
\(\Rightarrow x.\left(-x\right)=\frac{-16}{25}\)
\(\Rightarrow x.\left(-x\right)=\left(\frac{-4}{5}\right).\frac{4}{5}\)
Vậy \(x=\frac{4}{5}\)
2) a) \(3,8: \left(2x\right)=\frac{1}{4}:2\frac{2}{3}\)
\(\Rightarrow3,8: \left(2x\right)=\frac{3}{32}\)
\(\Rightarrow2x=\frac{3}{32}:3,8=\frac{15}{608}\)
\(x=\frac{15}{608}:2=\frac{15}{1216}\)
Vậy \(x=\frac{15}{1216}\)
b) \(\left(0,25x\right):3=\frac{5}{6}:0,125\)
\(\Rightarrow\left(0,25x\right):3=\frac{20}{3}\)
\(\Rightarrow0,25x=\frac{20}{3}.3=20\)
\(\Rightarrow x=20:0,25=80\)
Vậy x = 80
c) \(0,01:2,5=\left(0,75x\right):0,75\)
\(\Rightarrow\frac{1}{250}=\left(0,75x\right):0,75\)
\(\Leftrightarrow0,75x=\frac{1}{250}.0,75=\frac{3}{1000}\)
\(\Rightarrow x=\frac{3}{1000}:0,75=\frac{1}{250}\)
Vậy \(x=\frac{1}{250}\)
d) \(1\frac{1}{3}:0,8=\frac{2}{3}:\left(0,1x\right)\)
\(\Rightarrow\frac{5}{3}=\frac{2}{3}:\left(0,1x\right)\)
\(\Rightarrow0,1x=\frac{5}{3}.\frac{2}{3}=\frac{10}{9}\)
\(\Rightarrow x=\frac{10}{9}:0,1=\frac{100}{9}\)
Vậy \(x=\frac{100}{9}\)
a) \(\frac{x}{-15}=\frac{-60}{x}\Leftrightarrow x.x=-15.\left(-60\right)\Leftrightarrow x^2=900\Leftrightarrow x^2=\orbr{\begin{cases}30^2\\\left(-30\right)^2\end{cases}}\Leftrightarrow x=\orbr{\begin{cases}30\\-30\end{cases}}\)
\(\frac{a}{b}=\frac{c}{d}\)=>\(\left(\frac{a}{b}\right)^{2013}=\left(\frac{c}{d}\right)^{2013}\)
=>\(\frac{a^{2013}}{b^{2013}}=\frac{c^{2013}}{d^{2013}}\)=>\(\frac{2.a^{2013}}{2.b^{2013}}=\frac{5.c^{2013}}{5.d^{2013}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{2.a^{2013}}{2.b^{2013}}=\frac{5.c^{2013}}{5.d^{2013}}\)=\(\frac{2a^{2013}+5c^{2013}}{2b^{2013}+5d^{2013}}\)
=>\(\frac{a^{2013}}{b^{2013}}=\frac{c^{2013}}{d^{2013}}\)=\(\frac{2a^{2013}+5c^{2013}}{2b^{2013}+5d^{2013}}\) (\(\frac{2}{2}=1;\frac{5}{5}=1\)) (1)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
=>\(\left(\frac{a}{b}\right)^{2013}=\left(\frac{c}{d}\right)^{2013}=\left(\frac{a+b}{c+d}\right)^{2013}\)
=>\(\frac{a^{2013}}{b^{2013}}=\frac{c^{2013}}{d^{2013}}=\frac{\left(a+b\right)^{2013}}{\left(c+d\right)^{2013}}\) (2)
Từ (1) và (2)
=>\(\frac{2a^{2013}+5c^{2013}}{2b^{2013}+5d^{2013}}\)=\(\frac{\left(a+b\right)^{2013}}{\left(c+d\right)^{2013}}\)(đpcm)
Áp dụng tính chất dãy tỉ số bằng nhau
Ta có:
a/b=b/c=c/d=a+b+c/b+c+d
=> (a+b+c/b+c+d)^3=a/b*b/c*c/d=a/d
=> DPCM