Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kkk, thế này mà cũng hỏi:
abc là một tích, các thừa số có thể đổi vị trí nhưng vẫn ra 1 kết quả
=> abc,bac,cab đều chia hết cho 37
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= (100a + a + 10a) + (10b + 100b + b) + (c + 10c + 100c)
= 111a + 111b + 111c
= 111(a + b + c)
= 37.3(a + b + c) \(⋮\) 37 (đpcm)
ta có:abc+bca+cab=111.a
Vi 111 chia het cho 7 nen abc+bac+cab
k đ nha
Ta có :
Nếu \(\overline{abc}\)chia hết cho 37 thì 100a + 10b + c chia hết cho 37
→ 1000a + 100b + 10c chia hết cho 37
→ 1000a - 999a + 100b + 10c chia hết cho 7
→ 100b + 10c + a chia hết cho 7 ( bca chia hết cho 7 )
Nếu \(\overline{bca}\)chia hết cho 7 thì ............
Bạn làm tương tự như trên nhé
ab+cd+eg chia hết cho 11
Mà 9999ab = 99.11.ab chia hết cho 11 và 99cd = 9.11.cd chia hết cho 11
=> 9999ab+99cd+ab+cd+eg chia hết cho 11
=> 10000ab+100cd+eg chia hết cho 11
=> ab0000+cd00+eg chia hết cho 11
=> abcdeg chia hết cho 11
=> ĐPCM
Tk mk nha
Ta có: \(\overline{abcdeg}=10000\overline{ab}+100\overline{cd}+\overline{eg}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Mà \(999\overline{ab}⋮11;99\overline{cd}⋮11;\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)
\(\Rightarrow9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)
Vậy...
a, mk quên cách làm
b,ab+ba=11a+11b=11(a+b) chia hết cho 11
Phùng Gia Bảo câu b xem người ta giải trong câu hỏi tương tự chứ j