K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2016

a, mk quên cách làm

b,ab+ba=11a+11b=11(a+b) chia hết cho 11

21 tháng 1 2016

Phùng Gia Bảo câu b xem người ta giải trong câu hỏi tương tự chứ j

8 tháng 5 2021

kkk, thế này mà cũng hỏi:

abc là một tích, các thừa số có thể đổi vị trí nhưng vẫn ra 1 kết quả

=> abc,bac,cab đều chia hết cho 37

8 tháng 5 2021

abc là 1 số mà bạn ơi

7 tháng 8 2019

ai giúp mk với

7 tháng 8 2019

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

6 tháng 8 2018

abc + bca + cab 

= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

= (100a + a + 10a) + (10b + 100b + b) + (c + 10c + 100c)

= 111a + 111b + 111c

= 111(a + b + c) 

= 37.3(a + b + c) \(⋮\) 37 (đpcm)

7 tháng 8 2018

ta có:abc+bca+cab=111.a

Vi 111 chia het cho 7 nen abc+bac+cab

k đ nha

27 tháng 6 2017

đừng ngắn quá nhé (5 dòng trở lên)

27 tháng 6 2017

Ta có : 

Nếu \(\overline{abc}\)chia hết cho 37 thì 100a + 10b + c chia hết cho 37

→ 1000a + 100b + 10c chia hết cho 37

→ 1000a - 999a + 100b + 10c chia hết cho 7

→ 100b + 10c + a chia hết cho 7 ( bca chia hết cho 7 )

Nếu \(\overline{bca}\)chia hết cho 7 thì ............

Bạn làm tương tự như trên nhé

15 tháng 3 2017

a/ Ta có: aabb = a.1000+a.100+b.10+b

                     = a. (1000+100) + b. (10+1)

                     = 1100.a + 11.b

Vì \(1100⋮11\)\(\Rightarrow\)\(a1100⋮11\)

\(\Rightarrow\)\(1100.a+11.b⋮11\)

Mình chỉ biết làm câu a thôi :P

11 tháng 1 2018

ab+cd+eg chia hết cho 11

Mà 9999ab = 99.11.ab chia hết cho 11 và 99cd = 9.11.cd chia hết cho 11

=> 9999ab+99cd+ab+cd+eg chia hết cho 11

=> 10000ab+100cd+eg chia hết cho 11

=> ab0000+cd00+eg chia hết cho 11

=> abcdeg chia hết cho 11

=> ĐPCM

Tk mk nha

11 tháng 1 2018

Ta có: \(\overline{abcdeg}=10000\overline{ab}+100\overline{cd}+\overline{eg}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Mà \(999\overline{ab}⋮11;99\overline{cd}⋮11;\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

\(\Rightarrow9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

Vậy...