Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (a + b)2 - (a - b)2 = 4ab
VT = (a + b) ² - ( a - b ) ² = ( a² + 2ab + b²) - (a² - 2ab + b² ) = a² + 2ab + b² - a² + 2ab - b² = 4ab = VP (đpcm)
2) (a + b) ² + (a - b)² = 2(a² + b² )
VT = (a + b)² + (a - b)² = a² + 2ab + b² + a² - 2ab + b² = 2a² + 2b² = 2 (a² + b²) = VP (đpcm)
3) (a + b)² - 4ab = (a - b)²
VT = (a + b)² - 4ab = a² + 2ab + b² - 4ab = a² - 2ab + b² = (a - b)² = VP (đpcm)
4) (a - b)² + 4ab = (a + b)²
VT = (a - b)² + 4ab = a² - 2ab + b² + 4ab = a² + 2ab + b² = (a + b)² = VP (đpcm)
5) a3 + b3 = (a + b)3 - 3ab (a + b)
VP = (a + b)3 - 3ab (a + b) = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = a3+ b3 = VT (đpcm)
6) a3 - b3 = (a - b)3 + 3ab (a - b)
VP = (a - b)3 + 3ab (a - b) = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2 = a3- b3 = VT (đpcm)
7) a3 + b3 + c3 - 3abc = ( a + b + c) ( a² + b² + c² - ab - bc - ac )
VP = (a + b + c) (a2 + b2 + c2 - ab - bc - ac)
= a3 + ab² + ac² - a²b - abc - a²c + a²b + b3 + bc² - ab² - b²c - abc + a²c + b²c + c3 - abc - bc² - ac²
= a3 + b3 + c3 - 3abc = VT (đpcm)
câu 7 mk sửa đề lại xíu nhea !!!
có j sai xót mong m.n bỏ qa cho ☺♥
Nguyễn Mộc Hạ Chi
Áp dụng:
a) Tính (a – b)2 , biết a + b = 7 và a . b = 12.
b) Tính (a + b)2 , biết a - b = 20 và a . b = 3.
Bài giải:
a) (a + b)2 = (a – b)2 + 4ab
- Biến đổi vế trái:
(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab
= (a – b)2 + 4ab
Vậy (a + b)2 = (a – b)2 + 4ab
- Hoặc biến đổi vế phải:
(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2
= (a + b)2
Vậy (a + b)2 = (a – b)2 + 4ab
b) (a – b)2 = (a + b)2 – 4ab
Biến đổi vế phải:
(a + b)2 – 4ab = a2 +2ab + b2 – 4ab
= a2 – 2ab + b2 = (a – b)2
Vậy (a – b)2 = (a + b)2 – 4ab
Áp dụng: Tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412
a) (a+b)2 = (a-b)2 +4ab
⇔ (a+b)2 = a2 - 2ab + b2 +4ab
⇔ (a+b)2 = a2 + 2ab + b2
⇔ (a+b)2 = (a+b)2
⇒ (a+b)2 = (a-b)2 +4ab (dpcm)
b) (a-b)2 = (a+b)2 - 4ab
⇔ (a-b)2 = a2 + 2ab + b2 - 4ab
⇔ (a-b)2 = a2 - 2ab + b2
⇔ (a-b)2 = (a-b)2
⇒ (a-b)2 = (a+b)2 - 4ab (dpcm)
\(\left(a+b\right)^2=a^2+2ab+b^2\)(1)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)(2)
từ (1) và (2) => đpcm
\(\left(a-b\right)^2=a^2-2ab+b^2\)(3)
\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2\)(4)
từ (1) và (2) => đpcm
Mình nhầm
a)Ta có: (a+b)2=a2+2ab+b2=a2-2ab+4ab+b2=(a2-2ab+b2)+4ab=(a-b)2+4ab
=>(a+b)2=(a-b)2+4ab(1)
b)Ta có: (a-b)2=a2-2ab+b2=a2+2ab-4ab+b2=(a2+2ab+b2)-4ab=(a+b)2-4ab
=>(a-b)2=(a+b)2-4ab(2)
Áp dụng (1) và (2) ta có:
(a-b)2=(a-b)2-4ab=72-4.12=49-48=1
(a+b)2=(a-b)2+4ab=202+4.3=400+12=412
Vậy (a-b)2=1
(a+b)2=412
1)
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
ta có \(\left(a+b\right)^2=a^2+2ab+b^2\left(1\right)\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\left(2\right)\)
so sánh ta thấy 1 = 2
\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)
cái thứ 2 tương tự
2) \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)= 72-4*12=1
(a+b)2=(a-b)2+4ab = 202+4*3=412
Câu 1:
A=x^2- y^2=(x-y)(x+y)
Thay x=17, y=13 vào A, ta có: A= (17-13)(17+13)=4.30=120
=> Vậy A=120 tại x=17,y=13.
b, B= (2+1)(22+1)(24+1)(28+1)(216+1) (đề bài đúng)
= 1.(2+1)(22+1)(24+1)(28+1)(216+1)
= (2-1)(2+1)(22+1)(24+1)(28+1)(216+1)
= (22-1)(22+1)(24+1)(28+1)(216+1)
= (24-1)(24+1)(28+1)(216+1)
= (28-1)(28+1)(216+1)
= (216-1) (216+1)
= 232-1
=> B= = 232-1
Bài 1 :
a,Ta có :
\(A=x^2-y^2\)
\(=\left(x-y\right)\left(x+y\right)\)
Với x = 17 và y = 13 ta có :
\(A=\left(17-13\right)\left(17+13\right)\)
\(=4.30\)
\(=120\)
Vậy x = 120 với x = 17 và y = 13 .
b, Nhân biểu thức đã cho với ( 2 - 1 ) ta được :
\(\left(2-1\right)B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow\left(2-1\right)B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow1.B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow B=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow B=2^{32}-1\)
Câu 1:
a)BĐVT:\(\left(A+B\right)^2=A^2+2AB+B^2\)
\(=A^2-2AB+B^2+4AB\)
\(=\left(A-B\right)^2+4AB\left(BVT\right)\)
b)\(BĐVT:\left(A-B\right)^2=A^2-2AB+B^2\)
\(=A^2+2AB+B^2-4AB\)
\(=\left(A+B\right)^2-4AB\left(BVP\right)\)
a) VP= (a-b)^2 + 4ab
= a^2 - 2ab + b^2 + 4ab
= a^2 + 2ab + b^2
= (a+b)^2 = VT
Vậy ...
b) VP= (a+b)^2 - 4ab
= a^2 + 2ab + b^2 - 4ab
= a^2 - 2ab + b^2
= (a-b)^2 = VT
Vậy....
c) VP= (a+b)^3 - 3ab (a+b)
= a^3 + 3a^2b + 3ab^2 + b^3 - 3a^2b - 3ab^2
= a^3 + b^3 = VT
Vậy ....
a) Ta có: \(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2\)
Vậy: (a+b)2 = (a-b)2 + 4ab.
b) Ta có: \(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vậy: (a-b)2 = (a+b)2 - 4ab
c) Ta có: \(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)
Vậy: a3 + b3 = (a+b)3 - 3ab(a+b)
Đúng nha!!