Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tong 1+2+3+...+n=(n+1)n/2 . vi n(n+1) la 2 so tu nhien lien tiep nen tan cung bang 0;2;6 suy ra N=1+2+3+4+5+...+n-7= (n+1)n/2-7
suy ra N tan cung bang 3;4;6 suy ra khong chia het cho 10
Lời giải:
$A=1+2+3+....+n-7=\frac{n(n+1)}{2}-7=\frac{n^2+n-14}{2}$
Để chứng minh $A\not\vdots 10$, ta chỉ ra $A\not\vdots 5$
Nếu $n\vdots 5$ thì hiển nhiên $n^2+n-14\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+1(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+1)^2+5k+1-14=25k^2+15k-12\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+2(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+2)^2+5k+2-14=25k^2+25k-8\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+3(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+3)^2+5k+3-14=25k^2+35k-2\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+4(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+4)^2+5k+4-14=25k^2+45k+6\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Vậy $A\not\vdots 5$ nên $A\not\vdots 10$
n2+n+1=n.(n+1)+1
do n.(n+1) là tích hai số tự nhiên liên tiếp nên nó chia hết cho 2.Khi nó cộng với 1 thì sẽ không chia hết cho 2
do n.(n+1) là tích hai số tự nhiên liên tiếp nên nó có chữ số tận cùng là 0,2,6 và khi cộng với 1 thì có đuôi là 1,3,7 và không chia hết cho 5
vậy số đó không chia hết cho 2 và 5