Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2017+x2018+1
=x2017.(x+x2)+1
=>x2017.(x+x2)\(⋮\)x2+x
Mà 1\(⋮\)1
=>x2017.(x+x2)+1\(⋮\)x2+x+1
Đây là cách nghĩ của em ,em ms lớp 6 nên sai sót j a đừng tích sai e nha
Chúc a học tốt
\(x^{2017}+x^{2018}+1=\left(x^{2016}+x^{2017}+x^{2018}\right)-\left(x^{2016}-1\right)\)
\(=x^{2016}\left(x^2+x+1\right)-\left(x^{2016}-1\right)\)
Ta có: \(x^{2016}-1=x^{3.672}-1=\left(x^3\right)^{672}-1^{672}⋮\left(x^3-1\right)⋮\left(x^2+x+1\right)\)
mà \(x^{2016}\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\)
\(\Rightarrow x^{2017}+x^{2018}+1⋮\left(x^2+x+1\right)\)
\(P\left(x\right)=x^{2017}+x^2+1\)
\(=\left(x^{2017}-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^{2016}-1\right)+\left(x^2+x+1\right)\)
\(=x\left[\left(x^3\right)^{2016}-1\right]+\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)A+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)A+\left(x^2+x+1\right)\)
\(A=\left(x^2+x+1\right)\left[x\left(x-1\right)A+1\right]⋮x^2+x+1\) (đpcm)
Tách x2018 + x2017 =x2016.(x2+x)
Rồi tự làm típ
noi nhu may ai ma cha noi duoc