Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(g\left(x\right)=x^2-x\)có nghiệm x=0 và x=1 (vì \(x^2-x=x\left(x-1\right)\))
Để chứng minh \(f\left(x\right)⋮g\left(x\right)\), ta sẽ chứng minh \(f\left(x\right)\)cũng có nghiệm x=0 và x=1.
Thay x=0 vào \(f\left(x\right)\):\(f\left(0\right)\)\(=\left(-1\right)^{2018}+1^{2018}-2=0\)
Thay x=1 vào \(f\left(x\right)\): \(f\left(1\right)=1^{2018}+1^{2018}-2=0\)
\(\Rightarrow\)x=0 và x=1 là hai nghiệm của \(f\left(x\right)\)
\(\Rightarrowđpcm\)
\(g\left(x\right)=x^2-x\)
g(x) có nghiệm\(\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
Để chứng minh \(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)chia hết cho \(g\left(x\right)=x^2-x\)thì ta chứng minh tất cả nghiệm của đa thức g(x) cũng là nghiệm của f(x) hay 1 và 0 là nghiệm của f(x) (1)
Thật vậy:\(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)
+) Thay x = 0 vào f(x), ta được: \(f\left(0\right)=\left(0^2+0-1\right)^{2018}+\left(0^2-0+1\right)^{2018}-2=1+1-2=0\)
+) Thay x = 1 vào f(x), ta được: \(f\left(1\right)=\left(1^2+1-1\right)^{2018}+\left(1^2-1+1\right)^{2018}-2=1+1-2=0\)
Qua hai kết quả trên ta suy ra f(x) có 2 nghiệm là 0 và 1 (2)
Từ (1) và (2) suy ra \(f\left(x\right)⋮g\left(x\right)\)(đpcm)
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
Bài 2:
a: \(\Leftrightarrow x^2+3x-x^2-11=0\)
=>3x-11=0
=>x=11/3
b: \(\Leftrightarrow x^3+8-x^3-2x=0\)
=>8-2x=0
=>x=4
Bài 3:
a: Sửa đề: \(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=2x\cdot2y=4xy\)
b: \(=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)\)
\(=\left(9n-9\right)\left(5n+5\right)=9\left(n-1\right)\left(5n+5\right)⋮9\)
Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)
Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1
Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1
Ta có:\(M=\left(x+y\right)\left(x+z\right)\left(y+z\right)-2xyz\)
\(=\left(x^2+xz+xy+yz\right)\left(y+z\right)-2xyz\)
\(=x^2y+x^2z+xyz+xz^2+xy^2+xyz+y^2z+yz^2-2xyz\)
\(=x^2y+x^2z+xz^2+xy^2+y^2z+yz^2\)
\(=\left(x^2y+xy^2+xyz\right)+\left(y^2z+yz^2+xyz\right)+\left(z^2x+zx^2+xyz\right)-3xyz\)
\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+y+z\right)-3xyz\)
\(=\left(x+y+z\right)\left(xy+yz+xz\right)-3xyz\)
Vì \(\left(x+y+z\right)\left(xy+yz+xz\right)⋮6\)
Giả sử:Trg 3 số x,y,z không tồn tại số nào chẵn
=> x+y+z lẻ mà 1 số lẻ không chia hết cho 6 nên điều g/s sai
=> tồn tại ít nất 1 trong 3 số x,y,z chẵn
Giả sử: x chẵn
=> x chia hết cho 2 => 3xyz chia hết cho 6
=> đpcm
Câu 2:
Ta có:
\(P\left(x\right)=x^{100}+x^2+1\)
\(=x^{100}-x^{99}+x^{98}+x^{99}-x^{98}+x^{97}+...+x^3-x^2+x^2+x^2-x+1\)
\(=x^{98}\left(x^2-x+1\right)+x^{97}\left(x^2-x+1\right)+...+\left(x^2-x+1\right)\)
\(=\left(x^{98}+x^{97}+...+x+1\right)\left(x^2-x+1\right)\)
\(=Q\left(x\right).\left(x^{98}+x^{97}+...+x+1\right)\)
\(\Rightarrow P\left(x\right)⋮Q\left(x\right)\)
Câu 1:
Do P(x) bậc 3 và \(x^2-x+1\) bậc 2 nên đa thức thương có bậc 1, gọi đa thức thương có dạng \(ax+b\)
Do \(P\left(x\right)\) chia hết \(x-1\) và \(x-2\) nên \(P\left(1\right)=P\left(2\right)=0\)
Do \(P\left(x\right)\) chia \(x^2-x+1\) dư \(2x-3\)
\(\Rightarrow P\left(x\right)=\left(ax+b\right).\left(x^2-x+1\right)+2x-3\)
Thay \(x=1\) ta được:
\(P\left(1\right)=\left(a+b\right)\left(1-1+1\right)+2-3=0\)
\(\Leftrightarrow a+b=1\)
Thay \(x=2\) ta được:
\(P\left(2\right)=\left(2a+b\right)\left(4-2+1\right)+4-3=0\)
\(\Leftrightarrow3\left(2a+b\right)=-1\Leftrightarrow6a+3b=-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=1\\6a+3b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{4}{3}\\b=-\frac{7}{3}\end{matrix}\right.\)
\(\Rightarrow P\left(x\right)=\left(\frac{4}{3}x-\frac{7}{3}\right)\left(x^2-x+1\right)+2x-3\)
Bạn có thể nhân phá ra và rút gọn
bài này khó khinh lên đc mình bó tay
Đề này b kiếm đâu thế