K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

+Nếu n lẻ thì n+7 chẵn hay n+7 chia hết cho 2 =>(n+4).(n+7) chẵn 

+Nếu n chẵn thì n+4 chẵn hay n+4 chia hết cho 2 => (n+4).(n+7) chẵn

Vậy (n+4).(n+7) chẵn với mọi n thuộc N

7 tháng 11 2017

nếu n là số lẻ thì n+4 là số lẻ và n+7 là số chẵn vậy chẵn + le = chẵn

nếu n là số chẵn thì n+4 là số chẵn và n+7 là số lẻ vậy như trên chẵn+lẻ=chẵn

23 tháng 11 2016

Vì n+2009 và n+2010 là 2 số tự nhiên liên tiếp,nên khi ta cộng với bất kỳ số nào cũng sẽ có 1 số là số chẵn.[2 số tự nhiên liên tiếp bất kì nhân lại sẽ có kết quả là số chẵn,khi một số lẽ nhân với một số chẵn tích cũng sẽ bằng 1 số chẵn nào đó]

=>[n+2009].[n+2010]là số chẵn với mọi số tự nhiên n.

11 tháng 10 2018

TH1: n là số chẵn

\(\Rightarrow\)( n + 7 ) là số lẻ

\(\Rightarrow\)n.( n + 7 ) là số chẵn           ( vì chẵn \(\times\) lẻ \(=\) chẵn )

TH2: n là số lẻ 

\(\Rightarrow\)( n + 7 ) là số chẵn

\(\Rightarrow\)n.( n + 7 ) là số chẵn           ( vì lẻ \(\times\)chẵn \(=\)chẵn )

              Vậy n. ( n + 7 ) là số chẵn với mọi \(n\in N\)

15 tháng 4 2020

sửa đề: N=(a-2)(a+3)-(a-3)(a+2)

=(a2+3a-2-6)-(a2+2a-3a-6)

=a2+a-6-a2+a+6=2a là số chẵn với mọi a thuộc Z

15 tháng 4 2020

C1: nếu a chẳn thì (a-2) và (a+20) là số chẳn. Do đó (a-2)(a+3) và (a-3)(a+20) chẳn nên N chẳn.

nếu a lẻ thì (a+3) và (a-3) là số chẳn. Do đó (a-2)(a+3) và (a-3)(a+20) chẳn nên N chẳn.

C2:

vì a thuộc Z nên a có thể viết bằng: a = 2n hoặc a = 2n+1.

Nếu a = 2n thì N=(2n-2)(2n+3) - (2n-3)(2n+20) = 2*[(n-1)(2n+3) - (2n-3)(n+10)]. Do đó N là số chẳn.

Nếu a= 2n+1 thì N =(2n+1 -2)(2n+1+3) -(2n+1-3)(2n+1+20) = 2*[(2n-1)(n+1) - (n-1)(2n+21)]. Do đó N là số chẳn.

Kết luận: N chẳn với mọi a.(DPCM)

1 tháng 11 2021

+ n chẵn => n+4 chẵn => (n+4)(n+7) chẵn

+ n lẻ => n+7 chẵn => (n+4)(n+7) chẵn

\(\Rightarrow\left(n+4\right)\left(n+7\right)\) chẵn \(\forall n\)

6 tháng 5 2018

\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)

\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)

\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)

6 tháng 5 2018

10n+18n-1=10n-1+18n=99.....9(n chữ số 9)+18n

=9.(111....1(n chữ số 1)+2n)

xét --------------------------------=11...1-n+3n

dễ thấy tổng các chữ số của 11....1(n chữ số 1) là n

=>11....1-n chia hết cho 3

=>11.....1-n+3 chia hết cho 3

=>10n+18n-1 chia hết cho 27

10 tháng 1 2016

Gọi d thuộc Ư(6n+5,4n+3)

=>6n+5 chia hết cho d ; 4n+3 chia hết cho d

=>2(6n+5) chia hết cho d ; 3(4n+3) chia hết cho d

=>(12n+10)-(12n+9) chia hết cho d

=> 1 chia hết cho d

=>d=1

Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau

12 tháng 7 2017

xét n(n+1)(4n+1)

Có (nn+n1)(4n+1)

(2n+n)(4n+1)=3n(4n+1)

Mà 3 nhân với số nào cũng chia hết cho 3=>3n(4n+1)chia hết cho 3

xét3n(4n+1)

có 3n*4n+3n

=>n(3+3)4n

=>n6*4n=24n chia hết cho 2

12 tháng 7 2017

mình làm ko biết đúng không 

nhung chac la se dung

9 tháng 11 2017

Nếu n lẻ thi n+7 luôn chẵn => (n+4)(n+7) là số chẵn ( vì 1 số chẵn nhân với 1 số lẻ thì kết quả là 1 số chẵn ) 

Nếu n chẵn thì n+4 là số chẵn =>  (n+4)(n+7) là số chẵn ( vì 1 số chẵn nhân với 1 số chẵn thì kết quả là 1 số chẵn ) 

9 tháng 11 2017

Nếu n lẻ thì n + 7 là 1 số chẵn => (n+4)(n+7) là một số chẵn 

Nếu n chẵn thì n + 4 là 1 số chẵn => (n+4)(n+7) cũng là một số chẵn