K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

mk kobt

mk mới hok lp 5

xin  lỗibn

[​IMG]

11 tháng 1 2017

Tao không biết và tao cũng chẳng quan tâm

5 tháng 1 2018

Mk cần câu trả lời rõ ràng, đủ ý thì sẽ k.

5 tháng 1 2018

+ ta có số nguyên tố có số lượng ước là 2,đó 1 số chẵn,vậy số đó không thể là số nguyên tố=> số đó là hợp sỗ 
nên ta có thể đặt n = p1^k1.p2^k2...pr^kr (phân tích ra thừa số nguyên tố) 
số ước của n là (k1 + 1)(k2 + 1)..(kr + 1) 
theo đề bài thì (k1 + 1)(k2 + 1)..(kr + 1) là số lẽ 
=> k1,k2,..kr tất cả phải hoàn toàn là số chẵn,bởi vì chỉ cần một ki lẻ thì toàn bộ tích đó là số lẽ 
nghĩa là k1 = 2k1',k2 = 2k2',...,kr = 2kr' 
suy ra n = [p1^k1'.p2^k2'...prkr']^2 là 1 số chính phương

28 tháng 9 2015

A = 1 + 2.1 + 3.2.1 + 4.3.2.1 + 5! + ...+ n! = 33 + 5! + ...+ n!

Nhận xét: Từ 5! trở đi mỗi số hạng đều tận cùng là 0 (Vì chứa 5.2 = 10) => A có tận cùng là 3

=> A không thể là số chính phương

1 tháng 4 2018

Bài 1:

a) C = 4 + 42 + 43 + 44 + ... + 42015 + 42016

C = (4 + 42 + 43) + (44 + 45 + 46) + ... + (42014 + 42015 + 42016)

C = 4(1 + 4 + 42) + 44 ( 1 + 4 + 42) + ...+ 42014(1 + 4 + 42)

C = 4 . 21 + 44 . 21 + ... + 42014 . 21

C = 21(4 + 44 + ... + 42014\(⋮\)21

=> C \(⋮\)21

C = 4 + 42 + 43 + 44 + 45 + ... + 42015 + 42016

C = (4 + 42 + 43 + 44 + 45 + 46) + ... + (42011 + 42012 + 42013 + 42014 + 42015 + 42016)

C = 4(1 + 4 + 42 + 43 + 44 + 45) + ... + 42011(1 + 4 + 42 + 4+ 44 + 45)

C = 4 . 1365 + 47 . 1365 + ... + 42011 . 1365

C = 1365(4 + 47 + ... + 42011)

mà 1365 \(⋮\)105

=> C \(⋮\)105

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

Đặt $n+1=a^2$ và $2n+1=b^2$ với $a,b$ là số tự nhiên.

Vì $2n+1$ lẻ nên $b^2$ lẻ. SCP lẻ chia $4$ dư $1$ nên $2n+1$ chia $4$ dư $1$

$\Rightarrow 2n\vdots 4$

$\Rightarrow n\vdots 2$

$\Rightarrow n+1=a^2$ lẻ. Ta biết SCP lẻ chia $8$ dư $1$ nên $n+1=a^2$ chia $8$ dư $1$

$\Rightarrow n\vdots 8(1)$

Mặt khác:

Nếu $n$ chia 3 dư $1$ thì $n+1$ chia $3$ dư $2$ (vô lý vì 1 SCP chia 3 dư 0 hoặc 1)

Nếu $n$ chia $3$ dư $2$ thì $2n+1$ chia $3$ dư $2$ (cũng vô lý)

Do đó $n$ chia hết cho $3(2)$ 

Từ $(1);(2)$ mà $(3,8)=1$ nên $n\vdots 24$ (đpcm)

5 tháng 1 2021

là gì vậy