K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

a: \(=\left(4n-7-5\right)\left(4n-7+5\right)\)

\(=\left(4n-12\right)\left(4n-2\right)\)

\(=8\left(n-3\right)\left(2n-1\right)⋮8\)

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

Bài 3:

a) Ta có: \(\left(3n-1\right)^2-4\)

\(=\left(3n-1-2\right)\left(3n-1+2\right)\)

\(=\left(3n-3\right)\left(3n+1\right)\)

\(=3\cdot\left(n-1\right)\cdot\left(3n+1\right)⋮3\forall n\in N\)(đpcm)

b) Ta có: \(100-\left(7n+3\right)^2\)

\(=\left[10-\left(7n+3\right)\right]\left[10+\left(7n+3\right)\right]\)

\(=\left(10-7n-3\right)\left(10+7n+3\right)\)

\(=\left(7-7n\right)\left(13+7n\right)\)

\(=7\cdot\left(1-n\right)\cdot\left(13+7n\right)⋮7\forall n\in N\)(đpcm)

c) Ta có: \(\left(3n+1\right)^2-25\)

\(=\left(3n+1-5\right)\left(3n+1+5\right)\)

\(=\left(3n-4\right)\left(3n+6\right)\)

\(=3\cdot\left(3n-4\right)\cdot\left(n+2\right)⋮3\forall n\in N\)(đpcm)

d) Ta có: \(\left(4n+1\right)^2-9\)

\(=\left(4n+1-3\right)\left(4n+1+3\right)\)

\(=\left(4n-2\right)\left(4n+4\right)\)

\(=2\cdot\left(2n-1\right)\cdot4\cdot\left(n+1\right)\)

\(=8\cdot\left(2n-1\right)\cdot\left(n+1\right)⋮8\forall n\in N\)(đpcm)

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

15 tháng 5 2021

Bài 2:

\(\left(2n+3\right)^2-9\)

\(\rightarrow4n^2+12n+9-9\)

\(\rightarrow4n^2=12n\)

\(\rightarrow4n.\left(n+3\right)\)

\(\rightarrow4⋮4\)

\(\rightarrow4n⋮4\)

\(\rightarrow4n.\left(n+3\right)⋮4\)

\(\rightarrow\left(2n+3\right)^2-9⋮4\)

18 tháng 10 2021

Bài 3: 

a: Ta có: \(\left(n+2\right)^2-\left(n-2\right)^2\)

\(=\left(n+2+n-2\right)\left(n+2-n+2\right)\)

\(=4\cdot2n=8n⋮8\)

b: Ta có: \(\left(n+7\right)^2-\left(n-5\right)^2\)

\(=\left(n+7-n+5\right)\left(n+7+n-5\right)\)

\(=12\cdot\left(2n+2\right)\)

\(=24\left(n+1\right)⋮24\)

3 tháng 12 2021

adu

                                                                         aduâyđuaudauaudâuđuua

19 tháng 9 2016

a) (4n+3)^2-25=(4n+3+5)(4n-3+5)=(4n+8)(4n-2)=16n^2-8n+32n-16

Vì 16n^2 chia hết cho 8;8n chia hết cho 8;32n chia hết cho 8;16 chia hết cho 8

=>16n^2-8n+32n-16 chia hết cho 8

b)(2n+3)^2-9

=(2n+3-3)(2n+3+3)

=2n(2n+6)=4n^2+12n

Vì 4n^2 chia hết cho 4,12n chia hết cho 4=>4n^2+12n chia hết cho 4

1 tháng 10 2016

Đề sai rồi bạn

Nếu ta thử n=0 thôi ta sẽ có:

 \(\left(7n-2\right)^2-\left(2n-7\right)^2=\left(-2\right)^2-\left(-7\right)^2=4-49=-45\) không chia hết cho 7 :(

30 tháng 10 2021

em chịu

27 tháng 12 2023

\(a^3+6a^2+8=a\left(a^2+6a+9-1\right)=\)

\(=a\left[\left(a+3\right)^2-1\right]=a\left(a+3-1\right)\left(a+3+1\right)=\)

\(=a\left(a+2\right)\left(a+4\right)\)

Đây là tích của 3 số chẵn liên tiếp đặt \(a=2k\)

\(\Rightarrow a\left(a+2\right)\left(a+4\right)=2k\left(2k+2\right)\left(2k+4\right)=\)

\(=8k\left(k+1\right)\left(k+2\right)=A\)

Ta thấy

\(k\left(k+1\right)\) chẵn đặt \(k\left(k+1\right)=2p\)

\(\Rightarrow A=16p\left(k+2\right)⋮16\) (1)

Ta thấy \(k\left(k+1\right)\left(k+2\right)⋮3\) (2) (Tích của 3 số TN liên tiếp)

Từ (1) và (2)

\(\Rightarrow A⋮16x3\Rightarrow A⋮48\) vì \(\left(16,3\right)=1\)

29 tháng 5 2018

a) Thay m = -1 và n = 2 ta có:

3m - 2n = 3(-1) -2.2 = -3 - 4 = -7

b) Thay m = -1 và n = 2 ta được 

7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.