K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

Đề bài : Chứng minh rằng tổng lập phương của các số tự nhiên liên tiếp từ 1 đến n bằng bình phương của tổng từ 1 đến n ( n tự nhiên ). Hay ta cần chứng minh : \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) (*)

Lời giải : 

+) Xét \(n=1\) thì ta có : \(1^3=1^2\) ( đúng ) 

Suy ra (*) đúng với \(n=1\) (1)

+) Xét \(n=2\) ta có : \(1^3+2^3=1+8=9\)\(\left(1+2\right)^2=3^2=9\)

\(\Rightarrow1^3+2^3=\left(1+2\right)^2\) ( đúng ). Nên (*) đúng với \(n=2\) (2)

+) Giả sử (*) đúng với \(n=k\). Tức là : \(1^3+2^3+3^3+....+k^3=\left(1+2+...+k\right)^2\).

Ta cần chứng minh \(n=k+1\) cũng đúng với (*). Thật vậy , ta có :

\(1^3+2^3+3^3+.....+\left(k+1\right)^3\)

\(=1^3+2^3+....+k^3+\left(k+1\right)^3\)

\(=\left(1+2+3+....+k\right)^2+\left(k+1\right)^3\)

Xét biểu thức \(\left(k+1\right)^2+2.\left(k+1\right).\left(1+2+3+....+k\right)\)

\(=\left(k+1\right)^2+2.\left(k+1\right)\cdot\frac{\left(k+1\right).k}{2}\)

\(=\left(k+1\right)^2+\left(k+1\right)^2.k=\left(k+1\right)^3\)

Do đó \(1^3+2^3+....+\left(k+1\right)^3\)

\(=\left(1+2+3+....+k\right)^2+2.\left(k+1\right)\left(1+2+....+k\right)+\left(k+1\right)^2\)

\(=\left(1+2+3+....+k+k+1\right)^2\)

Vậy (*) đúng với \(n=k+1\) (3)

Từ (1) (2) và (3) suy ra \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) với mọi \(n\in N\).

15 tháng 5 2016

     Đặt A=1+2+3+4+ ...+n=aaa

Ta có:1+2+3+4+ ...+n=aaa

         (1+n).n:2=a.111

         (1+n).n:2=a.3.37

         (1+n).n=a.3.37.2

   Vì a.3.37.2 chia hết cho 37

Nên (1+n).n cũng chia hết cho 37

           Vậy n hoặc ( n + 1 ) phải chia hết cho 37

Mà a.3.29.3.2

     \(\Rightarrow\) a.3.254

Nên n hoặc n+1 không thể là 74

              Ta có 36.37 hoặc 37.38

Vì 38 không chia hết cho 6 nên n=36 và n+1=37

     Vậy n = 36

15 tháng 5 2016

Ta có 1+2+3+...+n=aaa(n,aEN)

   <=>  n*(n+1):2=a*111

   <=>  n*(n+1):2=a*3*37

   <=>n*(n+1)=a*3*2*37

  <=>n*(n+1)=6a*37(1)

Mà n và n+1 là 2 số tự nhiên liên tiếp

Nên 6a và 37 cũng là 2 số tự nhiên liên tiếp 

=>6a=36 hoặc 6a=38

       a=6              a=19/3(loại vì aEN)

Thay a=6 vào (1) ta có

n*(n+1)=36*37

=>n=36

 

ta thấy 1 số chính phương không bao giờ có đuôi là 2;3;7;8

Mà nếu mệnh đề (2) đúng thì n+8=...2 => mệnh đề (1) sai và n-1=...3 => mệnh đề (3) sai

Nhưng chỉ có 1 mệnh đề sai nên chỉ có mệnh đề (2) là thỏa mãn

Vậy n+8 và n+1 là số  chính phương

\(\Rightarrow\left(n+8\right)-\left(n-1\right)=9\)

\(\Leftrightarrow\left(n+8\right)^2-\left(n-1\right)^2=9^2\)

\(\Leftrightarrow\left[\left(n+8\right)-\left(n-1\right)\right]\left[\left(n+8\right)+\left(n-1\right)\right]=9^2\)

\(\Leftrightarrow9\left(2n+7\right)=9^2\)

\(\Leftrightarrow2n-7=9\)

\(\Leftrightarrow n=8\)

Vậy n=8 thì mới thỏa mãn mệnh đề (1) và (3)

                                                  

10 tháng 1 2018

Gọi 5 số tự nhiên liên tiếp đó là n - 2, n - 1, n, n +1, n + 2 (n ∈ N, n > 2).
Ta có: (n - 2)2 + (n - 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5(n2 + 2)
Vì n2 không thể tận cùng là 3 hoặc 8, do đó n2 + 2 không thể chia hết cho 5.
Nên 5(n2 + 2) không là số chính phương, cũng có nghĩa là tổng của 5 số tự nhiên liên tiếp không thể là số chính phương.

10 tháng 1 2018

\((n \in \mathbb{N};n \ge 2)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

(1) “Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ” sai, chẳng hạn \(x = 1:\;\sqrt x  = 1\) không là số vô tỉ.

(2) “Bình phương của mọi số thực đều không âm” đúng;

(3) “Có số nguyên cộng với chính nó bằng 0” đúng, số nguyên đó chính là số 0;

(4) “Có số tự nhiên n sao cho 2n – 1 = 0” sai, vì chỉ khi \(n = \frac{1}{2}\) thì 2n – 1 = 0 nhưng \(\frac{1}{2}\) không phải là số tự nhiên.

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

3 tháng 5 2019

Đáp án: B

Bước 2 sai vì  27k3 + 27k + 9k + 1 không chia hết cho 3