K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 8 2017

Lời giải:

Xét \(148\) số :

\(4\)

\(44\)

\(444\)

..........

\(\underbrace{444...444}_{\text{148 số}}\)

Vì ta có $148$ số, mà mỗi số khi chia cho $147$ có thể dư $0,1,....,146$ (\(147\) loại số dư) nên theo nguyên lý Dirichlet, tồn tại ít nhất \(\left [ \frac{148}{147} \right ]+1=2\) số có cùng số dư khi chia cho $147$

Gọi hai số đó là \(\underbrace{444....4}_{m}\)\(\underbrace{444....4}_{n}\) với \(m< n\)

Khi đó: \(\underbrace{444....4}_{n}-\underbrace{444....4}_{m}\vdots 147\)

\(\Leftrightarrow 4(\underbrace{111....1}_{n}-\underbrace{111....1}_{m})\vdots 147\Leftrightarrow 4\left ( \frac{10^n-1}{9}-\frac{10^m-1}{9} \right )\vdots 147\)

\(\Leftrightarrow 4\left ( \frac{10^n-10^m}{9} \right )\vdots 147\Leftrightarrow \frac{4.10^m(10^{n-m}-1)}{9}\vdots 147\Rightarrow \frac{4(10^{n-m}-1)}{9}\vdots 147\)

\(\Leftrightarrow \underbrace{444....4}_{n-m}\vdots 147\)

Do đó tồn tại số toàn chữ số $4$ chia hết cho $147$

26 tháng 5 2017

Xét 1 A , mẫu A không chứa thừa số nguyên tố 2 và 5 nên  1 A viết được dưới dạng số thập phân vô hạn tuần hoàn đơn.

1 A = a 1 a 2 ... a n ¯ 99...9 ⏟ n ⇒ 99...9 ⏟ n = A . a 1 a 2 ... a n ¯ ⇒ 99...9 ⏟ n ⋮ A .

27 tháng 7 2021

bạn lấy đâu 1/A người ta cho A thôi mà

22 tháng 7 2016

Bạn vào câu hỏi tương tự

22 tháng 7 2016

Có một bạn hỏi câu này và bạn đã trả lời ruif, còn hỏi làm gì nữa

27 tháng 10 2016

 

Gọi số n là số lẻ có tận cùng khác 5
Xét dãy số gồm (n + 1) số nguyên sau:
9
99
999
....
99...999
(n + 1) chữ số 9
Khi chia cho nthì sẽ có (n + 1) số dư
=> Theo nguyên lý Dinchlet có ít nhất 2 số có cùng số dư.
Giả sử: ai = n . q + r
: aj = n . k + r
Còn lại tự làm nha!

  
27 tháng 10 2016

ms nhìn thấy sai -_-

ta lập được 7 số sau

a1=1

a2=11

a3=111

a4=1111

a5=11111

a6=111111

a7=1111111

- Nếu một trong các số trên chia hết cho 7 thì bài toán đc chứng minh

-Nếu không có số nào chia hết cho 7 thì khi chia các số nà cho 7 được 6 số dư là một trong các số từ 1 đến 6 . Vì 7 số mà chỉ có 6 số dư nên phải có ít nhất hai số khi chia cho 7 cùng số dư nên hiệu của 2 số đó chia hết cho7 => đpcm