Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bổ sung đề là tìm x,y nguyên dương
b/\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\).Vai trò của x,y là bình đẳng nên có thể giả sử: \(x\ge y\)
Hiển nhiên ta có: \(\frac{1}{y}< \frac{1}{3}\Leftrightarrow y\ge4\) (vì x,y nguyên dương)
và\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}=\frac{2}{6}\le\frac{2}{y}\Rightarrow y\le6\)
Ta có: \(4\le y\le6\)
Đến đây bí,alibaba!
Đặt \(\dfrac{x}{2019}=\dfrac{y}{2020}=\dfrac{z}{2021}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2019k\\y=2020k\\z=2021k\end{matrix}\right.\)
Ta có : \(4.\left(x-y\right).\left(y-z\right)=4.\left(2019k-2020k\right).\left(2020k-2021k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)
Lại có : \(\left(z-x\right)^2=\left(2021k-2019k\right)^2=4k^2\)
Do đó : \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)