Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(ƯCLN_{\left(21n+1;18n+1\right)}=d\)
\(\Rightarrow\hept{\begin{cases}21n+1⋮d\\18n+1⋮d\end{cases}}\)
\(\Rightarrow\left(21n+1\right)-\left(18n+1\right)⋮d\)
\(\Leftrightarrow3n⋮d\)\(\Rightarrow21n⋮d\)
mà \(21n+1⋮d\)
\(\Rightarrow21n+1-21n⋮d\)\(\Leftrightarrow1⋮d\)
\(\Rightarrow d=1\)
do đó phân số 21n+1/18n+1 tối giản với mọi số tự nhiên n
goi d la ƯCLN(21N+1;18N+1)
TA CÓ 18N+1 CHIA HẾT CHO d
21N+1 CHIA HẾT CHO d
=> 126N+7 CHIA HẾT CHO d
126N+6 CHIA HẾT CHO d
=>126N+7-126N-6 CHIA HẾT CHO d
=>1 CHIA HẾT CHO d
=>d=1
VẬY ƯCLN CỦA TỬ VÀ MẪU LÀ 1 =>PHÂN SỐ TỐI GIẢN VỚI MỌI N THUỘC N
Gọi d là ƯCLN ( n + 1 ; 2n + 3 )
=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d ( 1 )
=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN (
Đang làm dở làm tiếp :
Vì ƯCLN ( n+1;2n+3 ) = 1 nên n+1/2n+3 tối giản
Vì n và n+1 là 2 số liên tiếp
=>n và n+1 là 2 số nguyên tố cùng nhau
=>ƯCLN(n,n+1)=1
=>n/n+1 là phân số tối giản
Gọi d = ƯCLN(n;n+1) \(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow n+1-n⋮d\Rightarrow1⋮d\Rightarrow d=\pm1\)
Vậy \(\frac{n}{n+1}\)là phân số tối giản \(\forall n\in N\)
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Gọi d=ƯCLN(n+1;n+2)
=>n+1-n-2 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
gọi d là ƯC(n; n + 1)
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
=> n + 1 - n ⋮ d
=> 1 ⋮ d
=> d = 1
=> n/n+1 là phân số tối giản với mọi n thuộc N
\(\text{Gọi ƯCLN( n , n + 1 ) = d}\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow\left(n+1\right)-\left(n\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\text{ Phân số }\frac{n}{n+1}\text{ là phân số tối giản}\)