Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9x+5y = 17x - 8x + 17y - 12y = 17(x+y) - 4(2x+3y)
chia hết cho 17 khi và chỉ khi 2x+3y chia hết cho 17
=>Nếu 2x+3y chia hết cho 17 thì 9x+5y cũng chia hết cho 17 và điều ngược lại
tk nha bạn
thank you bạn
(^_^)
9x+5y = 17x - 8x + 17y - 12y = 17(x+y) - 4(2x+3y)
chia hết cho 17 khi và chỉ khi 2x+3y chia hết cho 17
=>Nếu 2x+3y chia hết cho 17 thì 9x+5y cũng chia hết cho 17 và điều ngược lại
Ta có
3x + 2y chia hết cho 17
=> 9(3x+2y) chia hết cho 17
=> 27x + 18y chia hết cho 17
=> (27x +18y) - (17x + 17y) chia hết cho 17( vì 17 chia hết cho 17 nên 17x+17Y chia hết cho 17)
=> 10x + y chia hết cho 17
Vậy nếu 3x + 2y chia hết cho 17 thì 10x + y cũng chia hết cho 17 ( ĐPCM )
ta có :
3x + 2y chia hết cho 17
suy ra 9( 3x + 2y) chia hết cho 17
suy ra 27x + 18y chia hết cho 17
suy ra ( 27x + 18y ) - 9 17x + 17y) chia hết cho 17 ( vì 17 chia hết cho 17 nên 17x + 17y chia hết cho 17)
suy ra 10x + y chia hết cho 17
vậy nếu 3x + 2y chia hết cho 17 thùi 10x + y chũng chia hết cho 17
3x+5y chia hết cho 17
17x chia hết cho 17
=>3x+5y+17x chia hết cho 17
=>20x+5y chia hết cho 17
=>5.(4x+y) chia hết cho 17
mà 5 và 17 là 2 số nguyên tố cùng nhau
=>4x+y chia hết cho 17
=>đpcm
Ta có 5 x +7y chia hết cho 17
suy ra (17x+17y)-(5x+7y)chia hết cho 17
suy ra (17x-5x)+(17y-7y) chia hết cho 17
suy ra 12x +10y chia hết cho 17
suy ra [(12x+10y) chia 2] chia hết cho 17
= 6x +5y chia hết cho 17
Mấy câu này khá giống nhau làm cho câu mẫu rồi câu sau tự làm nha em =))
a) 3x + 5y ⋮ 7
=> 5.(3x + 5y) ⋮ 7
<=> 15x + 25y ⋮ 7 (1)
Lại có: 14x ⋮ 7; 21y ⋮ 7 => 14x + 21y ⋮ 7 (2)
Lấy (1) trừ (2), ta có:
(15x + 25y) - (14x + 21y) ⋮ 7
<=> x + 4y ⋮ 7
Điều ngược lại đương nhiên là đúng =)))
Chúc em học tốt !!!
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
có: với x,y là số nguyên
\(\left(5x-12y\right)⋮17\Rightarrow\left[\left(5x-12y\right)+17y\right]⋮17\Rightarrow5.\left(x+y\right)⋮17\)
mà \(\left(5;17\right)=1\Rightarrow x+y⋮17\)
\(\Rightarrow\left(x+y+17x\right)⋮17\Rightarrow\left(18x+y\right)⋮17\left(đpcm\right)\)
(5x−12y)⋮17⇒[(5x−12y)+17y]⋮17⇒5.(x+y)⋮17
mà \left(5;17\right)=1\Rightarrow x+y⋮17(5;17)=1⇒x+y⋮17
\Rightarrow\left(x+y+17x\right)⋮17\Rightarrow\left(18x+y\right)⋮17\left(đpcm\right)⇒(x+y+17x)⋮17⇒(18x+y)⋮17(đpcm)