K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

(4n+2) 4n  khong the nguyen to vi co uoc la 2

vay chi con 4n+1 va 4n+3

17 tháng 8 2016

1) Gọi số nguyên tố đó là n, ta có n=30k+r (r<30, r nguyên tố) 
Vì n là số nguyên tố nên r không thể chia hết cho 2,3,5 
Nếu r là hợp số không chia hết cho 2,3,5 thì r nhỏ nhất là 7*7 = 49 không thỏa mãn 
Vậy r cũng không thể là hợp số 
Kết luận: r=1 

2)a) Tổng của ba hợp số khác nhau nhỏ nhất bằng :

                         4 + 6 + 8 = 18.

b) Gọi 2k+1 là một số lẻ bất kỳ lớn hơn 17. Ta luôn có 2k+1=4+9+(2k−12).

Cần chứng minh rằng 2k−12 là hợp số chẵn (hiển nhiên) lớn hơn 4 (dễ chứng minh).

11 tháng 4 2016

để p/số trên tối giản thì ƯCLN  là 1,gọi số đó là d

n+1:d,2n+2:d

2n+3-2n-2:d

1:d

d=1

vậy p/số đó luôn tối giản

11 tháng 4 2016

gọi ƯC(n+1;2n+3)=d

ta có n+1 chia hết cho d nên 2(n+1) chia hết cho d nên 2n+2 cũng chia hết cho d , mặt khác 2n+3 chia hết cho d

nên 2n+3-(2n+2) chia hết cho d nên 1 chia hết cho d vậy ƯC của n+1 và 2n+3 là 1 hoặc -1

do đó mọi fân số dạng n+1/2n+3 đều là phân số tối giản