K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

\(M=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{62}+\frac{1}{63}\)

\(M=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}\right)+\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}\right)\)

\(M< 1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+\frac{1}{16}.16+\frac{1}{32}.32\)

\(M< 1+1+1+1+1+1\)

\(M< 1.6=6\left(đpcm\right)\)

22 tháng 10 2016

đpcm là điều phải chứng minh đúng không bn soyeon_Tiểubàng giải?

28 tháng 2 2018

Xét \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{123}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{122}\right)\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-2\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{61}\right)\)

\(=\frac{1}{62}+\frac{1}{63}+\frac{1}{64}+...+\frac{1}{123}\)

23 tháng 2 2017

1/2+1/3+1/4+...+1/63>1/31+1/31+...+1/31(62 số hạng 1/31)

hay 1/2+1/3+1/4+...+1/63>62 x 1/31

nên 1/2+1/3+1/4+...+1/63>2(dpcm)

3 tháng 5 2018

B < 1+1+1/2.3+1/3.4+...+1/62.63

B < 2+(1/2-1/3+1/3-1/4+...+1/62-1/63)

B < 2+(1/2-1/63)

B < 2+61/126 suy ra B < 2 và 6/126

Mà 2 + 61/126 <6

Suy ra B< 2+6/126<6 suy tiếp B < 6

13 tháng 4 2019

A=1+(1/2 + 1/3 + 1/4)+(1/5 + 1/6 + 1/7 + 1/8)+(1/9+...+1/16)+(1/17+...+1/32)+(1/33+...+1/64)

A>1+(1/2 + 1/4 + 1/4)+(1/8+ 1/8+ 1/8+ 1/8)+(1/16+1/16+...+1/16)+(1/64+...+1/64)

A>1 + 1 + 1/2 + 1/2 + 1/2+ 1/2

A>4

13 tháng 4 2019

cảm ơn nha

22 tháng 5 2015

Ta có : \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)

22 tháng 5 2015

Ta có:

\(S=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)

\(=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)

Bài toán phụ 1:

Ta có:

1/13<1/12

1/14<1/12

1/15<1/12

=>1/13+1/14+1/15<1/12x3=1/4 (1)

Bài toán phụ 2:

Ta có:

1/61<1/60

1/62<1/60

1/63<1/60

=>1/61+1/62+1/63<1/60x3=1/20 (2)

Từ (1) và (2), ta có:

1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/5+1/4+1/20

1/5+1/13+1/14+1/15+1/61+1/62+1/63<4/20+5/20+1/20

1/5+1/13+1/14+1/15+1/61+1/62+1/63<9/20<1/2

=>1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2

 

 

13 tháng 4 2017

Ta có: H=(1/2+1/3+1/4)+(1/5+...+1/8)+(1/9+1/16)+(1/17+...+1/63)

=> H=13/12 + (1/5+...+1/8)+(1/9+...+1/16)+(1/17+...+1/63)

=> H> 1 + 4x(1/8) + 8x (1/16) + (1/17+...+1/63)

=> H> 1+ 1/2 + 1/2 + (1/17+...+1/63)

=> H> 1+1+(1/17+...+1/63)

=> H>1+1

=> H>2