Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chữ số hàng chục là x \(\left(0< x\le9\right)\)
chữ số hàng dơn vị là y \(\left(0\le y\le9\right)\)
Ta có ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị 13 đơn vị
\(\Rightarrow3x-y=13\left(1\right)\)
Nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) nhỏ hơn số cũ 9 đơn vị.
\(\Rightarrow xy-yx=9\Leftrightarrow10x+y-10y-x=9\)
\(\Leftrightarrow9x-9y=9\)
\(\Leftrightarrow x-y=1\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}3x-y=13\\x-y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=12\\x-y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6\left(TM\right)\\y=5\left(TM\right)\end{cases}}\)
Vậy số cần tìm là \(65\)
Học tốt
Gọi số cần tìm có dạng là \(\overline{ab}\)
2 lần chữ số hàng chục bé hơn chữ số hàng đơn vị là 1 nên b-2a=1
Nếu viết số đó theo thứ tự ngược lại thì được một số mới với tổng của số mới và số ban đầu là 143
=>\(\overline{ab}+\overline{ba}=143\)
=>11a+11b=143
=>a+b=13
Do đó, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-2a+b=1\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-12\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\)
Gọi số phải tìm là abcd = n²
=> số viết theo thứ tự ngược lại là dcba = m² với m,n là các số tự nhiên và m>n
Do abcd và dcba đều ≤ 9999 và ≥ 1000 nên:
1000 ≤ m², n² ≤ 9999 => 32 ≤ m,n ≤ 99 (vì m,n € N)
abcd và dcba đều chính phương nên: a,d € {1,4,6,9} (các số cp tận cùng chỉ có thể là 1,4,6 hoặc 9) và a<d (♣)
Do dcba chia hết cho abcd nên: m² chia hết cho n² hay m chia hết cho n.
Đặt m = k.n với k € N và k ≥ 2: dcba = k². abcd
Ta có:
m = k.n ≤ 99
32 ≤ n
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3
Như vậy: k = 2 hoặc 3
+Nếu k = 2 thì: dcba = 4.abcd (♥)
Theo (♣) a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1.
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với (♣) đc: d= 4 hoặc d =6
Với d=4: (♥) <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ)
Với d = 6: (♥) <=> 390b+23 = 60c+2000 (cũng vô lý)
+Như vậy: k =3. Khi đó: dcba = 9.abcd (♦)
a chỉ có thể là 1 và d = 9. Khi đó: (♦) <=> 9cb1 = 9.1bc9
<=> 10c = 800b+80 <=> c = 80b+8
Điều này chỉ có thể xảy ra <=> b=0 và c=8
KL: số phải tìm là: 1089
Mình tìm hiểu thì biết số chính phương là số bình phương của 1 số nguyên.
2 số cần tìm :
9801 = 99^2
và 1089 = 33^2
Lời giải:
Xét số $\overline{a_1a_2...a_n}$. Số ngược lại của nó là:
$\overline{a_na_{n-1}...a_1}$
Hiệu 2 số: $\overline{a_1a_2...a_n}-\overline{a_na_{n-1}...a_1}$
$=a_1.10^{n-1}+a_2.10^{n-2}+...+a_n-(a_n.10^{n-1}+a_{n-1}.10^{n-2}+...a_1)$
$=a_1(10^{n-1}-1)+a_2(10^{n-2}-10^1)+a_3(10^{n-3}-10^3)+...+a_n(1-10^{n-1})$
Ta thấy:
$10^{n-1}-1\vdots (10-1=9)$ theo hằng đẳng thức đáng nhớ
$10^{n-2}-10=10(10^{n-3}-1)\vdots (10-1=9)$
......
$1-10^{n-1}=-(10^{n-1}-1)\vdots 9$
Do đó hiệu 2 số chia hết cho $9$
Ta có đpcm.