Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)^2+\left(x-1\right)^2-2\left(x+1\right)\left(x-1\right)\)
\(=\left[\left(x+1\right)-\left(x-1\right)\right]^2\)
\(=\left(x+1-x+1\right)^2=4\)
=> đpcm
(x+3)2-(4x+1)-2(x+2)
= x2+6x+9-4x-1-2x-4
= x2+(6x-4x-2x)+(9-1-4)
= x2+4
(3x-2)(9x^2+4+6x)-3(9x^2-2)
=27x^3+12x+18x-18x^2-8-12x-27x^2+6
=-2
Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)
\(\Rightarrow P=abc\)
Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z
\(P=-3xy\left(-x+5y\right)+5y^2\left(3x-2y\right)+2\left(5y^3-\dfrac{3}{2}x^2y+7\right)\\ =3x^2y-15xy^2+15xy^2-10y^3+10y^3-3x^2y+14\\ =14\)
=> Giá trị của biểu thức P không phụ thuộc vào giá trị của biến
\(A=\dfrac{\left(x+4-x\right)\left(x+4+x\right)}{2x+4}=\dfrac{4\left(2x+4\right)}{2x+4}=4\left(đpcm\right)\)
\(A=\dfrac{\left(x+4\right)^2-x^2}{2x+4}=\dfrac{\left(x+4-x\right)\left(x+4+x\right)}{2x+4}\)
\(=\dfrac{4\left(2x+4\right)}{2x+4}=4.\)
=> Giá trị của biểu thức trên không phụ thuộc vào x.
bạn chỉ cần nhân phá ngoặc ra rồi ghép các hạng tử có cùng biến là xong
\(\left(x-5\right)\left(3x+3\right)-3x\left(x-3\right)+3x+7=3x^2-12x-15-3x^2+9x+3x+7\)=-8
=>đpcm