Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)
\(A< \frac{1}{4}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)=\frac{1}{4}\left(1-\frac{1}{n}\right)\)
\(A< \frac{1}{4}-\frac{1}{4n}\)
Lại có \(n>0\) nên \(\frac{1}{4n}>0\)
\(\Rightarrow\)\(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
\(A=\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{\left(2n\right)^2}\)
\(=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
Có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(...\)
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
\(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2-\frac{1}{n}< 2\)
\(\Rightarrow A< \frac{1}{2^2}.2=\frac{1}{2}\)
đặt A=1/2^2+1/4^2+1/6^2+.....+1/(2n)^2
ta có :
A=1/2^2 +1/2^2(1/2^2+1/3^2+1/4^2+.....+1/n^2)
A<1/2^2+1/2^2(1/1.2+1/2.3+...+1/(n-1)n)
=1/2^2+1/2^2(1-1/2+1/2-1/3+....+1/(n-1)-1/n)
=1/2^2+1/2^2(1-1/n)
<1/2^2+1/2^2.1=1/2<3/4
vậy A<3/4
mình đồng ý với bạn witch roses