Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(45⋮9;99⋮9;180⋮9\)
Do đó: \(45+99+180⋮9\)
=>\(C⋮9\)
d: \(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)\)
=>D chia hết cho cả 3 và 5
Sơ đồ con đường |
Lời giải chi tiết |
|
Ta có: 45 ⋮ 9 ; 99 ⋮ 9 ; 180 ⋮ 9 nên chia hết cho 9. (Áp dụng tính chất chia hết của một tổng) |
c) C = 5 + 52 + 53 +...+ 58
= ( 5 + 52 ) + ( 53 + 54 ) + ( 55 + 56 ) + ( 57 + 58 )
= 5 + 52 + 52( 5 + 52 ) + 54( 5 + 52 ) + 56( 5 + 52 )
= 5 + 52 ( 1 + 52 + 54 + 56 )
= 30. ( 1 + 52 + 54 + 56 ) chia hết cho 30
Vậy C = 5 + 52 + 53 +...+ 58 chia hết cho 30
b) B = 165 + 215
= (24)5 + 215
= 220 + 215
= 215. 25 + 215
= 215(25 + 1)
= 215.33 chia hết cho 33
Vậy B = 165 + 215 chia hết cho 33
a. Ta có:
45 + 99 + 180 = 324
Vì: Số tận cùng của nó là số 4
=> 324 chia hết cho 2
Bài 1
chỉ cần tính ra kết quả là đc
Bài 2
Giả sử một số tự nhiên bất kì = n
=> 2 số tự nhiên liên tiếp là n và n+1
- Với n = 2k+1=>n+1 = 2k+2 chia hết 2
- Với n = 2k => n chia hết 2
Vậy trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết 2
7^6-7^5+7^9=7^5nhân(7-1+7^4)=7^5nhân 55=vì 55 chia hết cho 11,nên7^6-7^5+7^9 chia hết cho11
A= 1+3+3^2+3^3+...+3^11
=(1+3)+(3^2+3^3)+...+(3^10+3^11)
=4+3^2(4)+...+3^10(4)
=4(1+3^2+...+3^10)
a) A= (1+3)+(3^2+3^3)+.....+ ( 3^10 + 3^11)
A= 1. ( 1+ 3) + 3^2. ( 1+ 3) +.....+ 3^10. (1+3)
A= 1.4+3^2.4+...+3^10.4
A= 4. ( 1+ 3^2+...+ 3^10) chia hết cho 4
Vậy A chia hết cho 4
b) B= (2^4)^5 + 2^15
B= 2^ 20+ 2^15
B= 2^15.2^5+2^15
B= 2^15. (2^5 +1)
B= 2^15.33 chia hết cho 33
Vậy B chia hết cho 33
c) C= 5+5^2+5^3+....+5^8 chia hết cho 5 (1)
C= 5+ 5^2 +5^3+.....+5^8
C= (5+5^2)+(5^3+5^4)+...+(5^7+5^8)
C= 5. (1+5) + 5^3. (1+5) +....+ 5^7.(1+5)
C= 5.6+5^3.6+...+5^7.6 chia hết cho 6
mà 5 và 6 là hai số nguyên tố cùng nhau
suy ra C chia hết cho 30
Vậy C chia hết cho 30
d) 5.9+11.9+9.20= 9. (5+11+20) chia hết cho 9
Vậy D chia hết cho 9
e) E= (1+3+ 3^2) + (3^3+3^4+3^5) +....+ (3^117+3^118+3^119)
E= 1.(1+3+3^2) + 3^3.(1+3+3^2) +....+ 3^117.(1+3+3^2)
E= 1.13+3^3.13+...+ 3^117.13
E= 13. ( 1+3^3+...+3^117) chia hết cho 13
Vậy E chia hết cho 13
f) Ta có: 10^28= 100.....000 ( có 28 chữ số 0)
thay 100...00 vào 10^28 ta được:
1000....00+8= 1000...008 chia hết cho 3 và 9 vì tổng các chữ số của 100...008 bằng 9
mà 3 và 9 là hai số nguyên tố cùng nhau
suy ra F chia hết cho 27
Vậy F chia hết cho 27
g) G= (2^3)^8 + 2^20
G= 2^24 + 2^20
G= 2^20 . 2^4 + 2^20
G= 2^20. (2^4+1)
G= 2^20. 17 chia hết cho 17
Vậy G chia hết cho 17
Nếu các bạn thầy hay thì (k) đúng cho mình nhé! thank you very much
Sơ đồ con đường
Lời giải chi tiết
Áp dụng tính chất chia hết của một tổng ta có:
45 ⋮ 9 99 ⋮ 9 180 ⋮ 9 ⇒ ( 45 + 99 + 180 ) ⋮ 9 = > D ⋮ 9