Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\sqrt{1+2017^2+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)
Đặt B = 2017 => B + 1 = 2018
Khi B bằng:
\(B=\sqrt{1+B^2+\frac{B}{\left(B+1\right)^2}}+\frac{B}{B+1}\)
\(B=\sqrt{\frac{\left(B+1\right)^2+B^2\left(B+1\right)^2+B^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)
\(B=\sqrt{\frac{B^2\left(B+1\right)^2+2B\left(B+1\right)^2+B^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)
\(B=\sqrt{\frac{\left[B\left(B+1\right)+1\right]^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)
\(B=\frac{B^2+B+1}{B+1}+\frac{B}{B+1}\left(\text{vi}:a>0\right)\)
\(B=\frac{B^2+2B+1}{B+1}\)
\(B=\frac{\left(B+1\right)^2}{B+1}\)
\(B=B+1\left(\text{vi}:a>0\Rightarrow B+1>0\right)\)
\(B=2017+1\left(\text{vi}:B=2017\right)\)
\(\Rightarrow B=2018\)
Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}=\left(1+\frac{1}{2018}\right)+\left(\frac{1}{2}+\frac{1}{2017}\right)+...+\left(\frac{1}{1009}+\frac{1}{1010}\right)\)
\(=\frac{2019}{1.2018}+\frac{2019}{2.2017}+...+\frac{2019}{1009.1010}\)
\(=2019\left(\frac{1}{1.2018}+\frac{1}{2.2017}+...+\frac{1}{1009.1010}\right)\)
Do đó \(A=1.2.3....2018.2019\left(\frac{1}{1.2018}+\frac{1}{2.2017}+...+\frac{1}{1009.1010}\right)⋮2019\) (đpcm)
Áp dụng BĐT Cô si ta có:
\(x^3+8y^3+1\ge3\sqrt[3]{x^3\cdot8y^3\cdot1}=6xy\)
\(\Rightarrow x^3+8y^3+1-6xy\ge0\)
Dấu "=" xảy ra tại \(x=2y=1\Rightarrow x=1;y=\frac{1}{2}\)
Khi đó:
\(A=x^{2018}+\left(y-\frac{1}{2}\right)^{2019}=1^{2018}+0^{2019}=1\)
a/
Nhận thấy ngay phương trình có 2 nghiệm \(\left[{}\begin{matrix}x=2019\\x=2018\end{matrix}\right.\)
- Với \(x>2019\Rightarrow\left\{{}\begin{matrix}x-2018>1\\x-2019>0\end{matrix}\right.\) \(\Rightarrow\left|x-2018\right|^{2019}+\left|x-2019\right|^{2018}>1\Rightarrow\) pt vô nghiệm
- Với \(x< 2018\Rightarrow\left\{{}\begin{matrix}x-2018< 0\\x-2019< -1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-2018\right|>0\\\left|x-2019\right|>1\end{matrix}\right.\)
\(\Rightarrow\left|x-2018\right|^{2019}+\left|x-2019\right|^{2018}>1\Rightarrow\) pt vô nghiệm
- Với \(2018< x< 2019\) viết lại pt:
\(\left|x-2018\right|^{2019}+\left|2019-x\right|^{2018}=1\)
Ta có: \(\left\{{}\begin{matrix}0< x-2018< 1\\0< 2019-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-2018\right|^{2019}< x-2018\\\left|2019-x\right|^{2018}< 2019-x\end{matrix}\right.\)
\(\Rightarrow\left|x-2018\right|^{2019}+\left|2019-x\right|^{2018}< x-2018+2019-x=1\)
\(\Rightarrow\) pt vô nghiệm
Vậy pt có đúng 2 nghiệm: \(\left[{}\begin{matrix}x=2018\\x=2019\end{matrix}\right.\)
b/
Thay \(x=0\) vào pt thấy không phải là nghiệm, chia cả tử và mẫu của các hạng tử vế trái cho x:
\(\frac{2}{x+\frac{1}{x}-1}-\frac{1}{x+\frac{1}{x}+1}=\frac{5}{3}\)
Đặt \(x+\frac{1}{x}=a\) phương trình trở thành:
\(\frac{2}{a-1}-\frac{1}{a+1}=\frac{5}{3}\)
\(\Leftrightarrow2\left(a+1\right)-\left(a-1\right)=\frac{5}{3}\left(a^2-1\right)\)
\(\Leftrightarrow5a^2-3a-14=0\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{7}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{7}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-2x+1=0\\5x^2+7x+5=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=1\)
Ta có : \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow x=y=z\)
Khi đó : \(3x^{2018}=27^{673}=\left(3^3\right)^{673}=3^{2019}\)
\(\Leftrightarrow x^{2018}=3^{2018}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=z=3\\x=y=z=-3\end{cases}}\)
Đến đây tự tính A nha!
\(B=\sqrt{\frac{2019^2}{2019^2}+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{\left(2018+1\right)^2}{2019^2}+\frac{2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{1}{2019^2}+\frac{2018^2+2.2018+2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{1}{2019^2}+2.2018.\frac{1}{2019}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\left(\frac{1}{2019}+2018\right)^2}+\frac{2018}{2019}\)
\(B=\frac{1}{2019}+2018+\frac{2018}{2019}=2019\) là một số tự nhiên
\(B=\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(B=\sqrt{1^2+2018^2+\left(-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2.\frac{2018}{2019}+2.\frac{2018^2}{2019}-2.2018}\)\(+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2\left(\frac{2018+2018.2018-2018.2019}{2019}\right)}\)\(+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
\(B=1+2018-\frac{2018}{2019}+\frac{2018}{2019}=2019\)
Vậy B có giá trị là 1 số tự nhiên.