Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A =19^1981+11^1980
19^1981 = ( 2.10 -1)^1981 đồng dư -1 (mod 10)
11^1980 = ( 10 +1)^1980 đồng dư 1 (mod 10)
=> A chia hết cho 10.
b- ta chứng minh B =10^n - 10 luôn chia hết cho 45.
B = 10^n - 10 = 10(10^n -1)=10.9.(10^n + 10^(n-1) +...+1)
=> B chia hết cho 5 và 9
mà 5 và 9 nguyên tố cùng nhau vậy B chia hết cho 5.9=45
a ) 121980 = (122)990 = .....4990 = .......6
21000 = ( 22 )500 = 4500 = ......6
=> 121980 - 21000 = ......6 - ......6 = .......0 chia hết cho 10
=> 121980 - 21000 chia hết cho 10 (đpcm)
b ) 191980 = .....1
111980 = ......1
=> 191980 - 111980 = .....1 - .....1 = ......0 chia hết cho 10
=> 191980 - 111980 chia hết cho 10(đpcm)
1
ta có 72=9,8 và UCLN(8,9)=1
SUY RA x269y chia hết 8 suy ra 69y cia hết cho 8 nên y = 6
nếu y=6 ta có x2696 chia hết cho 9 suy ra x+23 chia hết cho 9 mà 0<x<9 nên x=4
vậy x=4 và y=6
2
a, do 10 là số chăn nên nâng mũ mấy lên cũng là số chẵn suy 10 ^2002 chia hết co 2
ta có 2^2002 =100...00 suy 1 ko chia hết cho 3 nên 10^2002 ko chia hết cho 3
b, ta có 10^2017 +1=100..00 +1 suy ra 2 ko chia hết cho 9
mấy bài còn lại cux dễ tự làm đi nha lê
c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)
S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)
=780+54(5+52+53+54)+...........+52008(5+52+53+54)
=65*12 + 54*65*12 + .......... + 52008*65*12
=65*12(1+54+...+52008) chia hết cho 65
=> S chia hết cho 65
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!