K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:

a)

\(\frac{\sin a}{1+\cos a}+\cot a=\frac{\sin a}{1+\cos a}+\frac{\cos a}{\sin a}=\frac{\sin ^2a+\cos^2a+\cos a}{\sin a(1+\cos a)}\)

\(=\frac{1+\cos a}{\sin a(1+\cos a)}=\frac{1}{\sin a}\) (đpcm)

b)

\(\frac{1}{\cos a}-\frac{\cos a}{1+\sin a}=\frac{1+\sin a-\cos ^2a}{\cos a(1+\sin a)}=\frac{(1-\cos ^2a)+\sin a}{\cos a(\sin a+1)}\)

\(=\frac{\sin^2a+\sin a}{\cos a(\sin a+1)}=\frac{\sin a(\sin a+1)}{\cos a(\sin a+1)}=\frac{\sin a}{\cos a}=\tan a\) (đpcm)

c)

\(\frac{\tan a-\sin a}{\sin ^3a}=\frac{\frac{\sin a}{\cos a}-\sin a}{\sin ^3a}=\frac{\frac{1}{\cos a}-1}{\sin ^2a}=\frac{1-\cos a}{\cos a\sin ^2a}=\frac{1-\cos a}{\cos a(1-\cos ^2a)}=\frac{1}{\cos a(1+\cos a)}\)

d)

\(\frac{\sin a+\cos a-1}{\sin a-\cos a+1}=\frac{(\sin a+\cos a-1)(\sin a+\cos a+1)}{(\sin a-\cos a+1)(\sin a+\cos a+1)}=\frac{(\sin a+\cos a)^2-1}{(\sin a+1)^2-\cos ^2a}\)

\(=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-\cos ^2a}=\frac{1+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-(1-\sin ^2a)}\)

\(=\frac{2\sin a\cos a}{2\sin ^2a+2\sin a}=\frac{2\sin a\cos a}{2\sin a(\sin a+1)}=\frac{\cos a}{1+\sin a}\) (đpcm)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Mấu chốt trong các bài này là việc sử dụng công thức $\sin ^2a+\cos ^2a=1$

NV
4 tháng 6 2020

\(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\)

\(=1-\frac{1}{2}\left(2sinx.cosx\right)^2=1-\frac{1}{2}sin^22x\)

\(=1-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2}cos4x\right)=\frac{3}{4}+\frac{1}{4}cos4x\)

NV
13 tháng 6 2020

Sử dụng công thức \(cosx.cosy=\frac{1}{2}\left(cos\left(x+y\right)+cos\left(x-y\right)\right)\) với 2 cái cos cuối cùng

13 tháng 6 2020

làm sao để từ b1-b2 đc vậy ạ

18 tháng 6 2020

\(P=\sin^2x+cos\left(\frac{\pi}{3}-x\right)cos\left(\frac{\pi}{3}+x\right)\)

\(=\sin^2x+cos^2\left(\frac{\pi}{3}\right)-sin^2x\)

\(=\cos^2\left(\frac{\pi}{3}\right)=\frac{1}{4}\)

=> P không phụ thuộc vào x

10 tháng 8 2018

a) ta có : \(cos^2\left(a-b\right)-sin^2\left(a+b\right)\)

\(=\left(cosa.cosb+sina.sinb\right)^2-\left(sina.cosb+sinb.cosa\right)^2\)

\(=cos^2a.cos^2b+sin^2a.sin^2b-sin^2a.cos^2b-sin^2b.cos^2a\)

\(=cos^2a.cos^2b-sin^2a.cos^2b+sin^2a.sin^2b-sin^2b.cos^2a\)

\(=cos^2b\left(cos^2a-sin^2a\right)-sin^2b\left(cos^2a-sin^2a\right)\)

\(=\left(cos^2b-sin^2b\right)\left(cos^2a-sin^2a\right)=cos2a.cos2b\left(đpcm\right)\)

NV
17 tháng 6 2020

\(\frac{1+cosx-sinx}{1-cosx-sinx}=\frac{1+2cos^2\frac{x}{2}-1-2sin\frac{x}{2}.cos\frac{x}{2}}{1-1+2sin^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}=\frac{2cos^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}{2sin^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}\)

\(=\frac{-2cos\frac{x}{2}\left(sin\frac{x}{2}-cos\frac{x}{2}\right)}{2sin\frac{x}{2}\left(sin\frac{x}{2}-cos\frac{x}{2}\right)}=\frac{-cos\frac{x}{2}}{sin\frac{x}{2}}=-cot\frac{x}{2}\)

NV
13 tháng 6 2020

\(\frac{sin2a-cos2a}{sin2a+cos2a}=\frac{\left(sin2a-cos2a\right)^2}{\left(sin2a+cos2a\right)\left(sin2a-cos2a\right)}\)

\(=\frac{sin^22a+cos^22a-2sin2a.cos2a}{sin^22a-cos^22a}=\frac{1-sin4a}{-cos4a}\)

\(=-\frac{1}{cos4a}+\frac{sin4a}{cos4a}=tan4a-\frac{1}{cos4a}\)

13 tháng 6 2020

mình viết nhầm=)), tử là trừ, mẫu cộng nhé

NV
8 tháng 2 2021

\(A=\dfrac{2tan^2a+\dfrac{5}{cos^2a}}{4-\dfrac{3}{cos^2a}}=\dfrac{2tan^2a+5\left(1+tan^2a\right)}{4-3\left(1+tan^2a\right)}=...\) (bạn tự thay số bấm máy nhé)

\(B=\dfrac{3cot^2a-1}{cot^2a+2}=...\)