Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Bài.1:u_n=\dfrac{3}{2}.\left(\dfrac{1}{2}\right)^n=\dfrac{3}{512}\\ \Rightarrow\left(\dfrac{1}{2}\right)^n=\dfrac{3}{512}:\dfrac{3}{2}=\dfrac{1}{256}=\dfrac{1}{2^8}\\ Mà:\left(\dfrac{1}{2}\right)^n=\left(\dfrac{1}{2}\right)^8\\ Vậy:n=8\\ \Rightarrow Vậy:\dfrac{3}{512}.là.số.hạng.thứ.8\)
TenAnh1 TenAnh1 A = (-4.36, -6.06) A = (-4.36, -6.06) A = (-4.36, -6.06) B = (11, -6.06) B = (11, -6.06) B = (11, -6.06)
1/ \(=\lim\limits_{x\rightarrow-\infty}x\left(-\sqrt{\dfrac{16x^2}{x^2}-\dfrac{3x}{x^2}+\dfrac{5}{x^2}}+2-\dfrac{5}{x}\right)=\lim\limits_{x\rightarrow-\infty}x\left(-4+2\right)=-\infty\)
\(=\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{\dfrac{16x^2}{x^2}-\dfrac{3x}{x^2}+\dfrac{5}{x^2}}+2-\dfrac{5}{x}\right)=\lim\limits_{x\rightarrow+\infty}x\left(4+2\right)=+\infty\)
2/ \(S=\dfrac{-\dfrac{1}{3}}{1+\dfrac{1}{3}}=-\dfrac{1}{4}\)
4/
5/
\(f'\left(x\right)=4\left(2m-1\right)x^3-4x\)
Vì tiếp tuyến vuông góc với \(y=5x-2018\Rightarrow f'\left(x\right)=-\dfrac{1}{5}\)
\(\Rightarrow f'\left(1\right)=-\dfrac{1}{5}\Leftrightarrow4\left(2m-1\right)-4=-\dfrac{1}{5}\Leftrightarrow m=\dfrac{39}{40}\)
Theo giả thiết : \(\begin{cases}xy=3^2\\x^4=y\sqrt{3}\end{cases}\) \(\Leftrightarrow\begin{cases}y=\frac{9}{x}\\x^4=\frac{9\sqrt{3}}{x}\end{cases}\) \(\Leftrightarrow\begin{cases}y=\frac{9}{x}\\x^5=9\sqrt{3}\end{cases}\)
\(\Leftrightarrow\begin{cases}x=\sqrt[5]{\sqrt{3^5}}\\y=\frac{3^2}{x}\end{cases}\)
\(\Leftrightarrow\begin{cases}x=\sqrt{3}\\y=3\sqrt{3}\end{cases}\)
I.
Do \(\left(u_n\right)\) là cấp số nhân \(\Rightarrow\)\(u_4=u_3.q\Rightarrow q=\dfrac{u_4}{u_3}=\dfrac{10}{3}\)
\(u_3=u_1q^2\Rightarrow u_1=\dfrac{u_3}{q^2}=\dfrac{27}{100}\)
2. Công thức số hạng tổng quát: \(u_n=\dfrac{27}{100}.\left(\dfrac{10}{3}\right)^{n-1}\)
II.
1. \(\lim\limits\dfrac{-3n^2+2n-2022}{3n^2-2022}=\lim\dfrac{-3+\dfrac{2}{n}-\dfrac{2022}{n^2}}{3-\dfrac{2022}{n^2}}=\dfrac{-3+0-0}{3-0}=-1\)
2.
\(\lim\limits_{x\rightarrow2}\dfrac{x^2-5x+6}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x-3\right)}{x-2}=\lim\limits_{x\rightarrow2}\left(x-3\right)=-1\)