K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 12 2020

a. Gọi pt đường thẳng AB có dạng \(y=ax+b\)

Do đường thẳng AB qua A và B nên ta có:

\(\left\{{}\begin{matrix}2a+b=3\\-a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)

Phương trình AB: \(y=2x-1\) \(\Rightarrow\) hệ số góc \(a=2\)

b. Thay tọa độ C vào pt AB:

\(-1=2.0-1\) (thỏa mãn)

\(\Rightarrow C\) thuộc đường thẳng AB hay 3 điểm A;B;C thẳng hàng

13 tháng 12 2020

undefined

\(\overrightarrow{AB}=\left(-3;-6\right)\)

\(\overrightarrow{AC}=\left(-1;-3\right)\)

Vì \(\dfrac{-3}{-1}< >\dfrac{-6}{-3}\)

nên A,B,C không thẳng hàng

1 tháng 12 2015

bạn viết nhầm tọa độ điểm C rồi phải là C(1;0)

23 tháng 9 2021

Giả sử đường thẳng d đi qua A và B có dạng: `y=ax+b`

Đường thẳng d đi qua A và B là nghiệm của hệ: `{(2=a.1+b),(0=a.(-1)+b):}`

`<=> {(a=1),(b=1):}`

`=> d:\ y=x+1`

`=> C\ in (d)`

`=>` A,B,C thẳng hàng.

Đường thẳng đi qua 3 điểm đó là: `y=x+1`.

 

23 tháng 9 2021

bạn ơi sao lại => C ∈ (d) vậy

 

26 tháng 5 2021

Gọi d: y = ax + b là đường thẳng đi qua hai điểm A, B.

Ta có \(\left\{{}\begin{matrix}2a+b=1\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-3\\b-a=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\).

Do đó đường thẳng đi qua A, B là y = -x + 3.

Thay x = 3 vào ta được y = 0 nên C(3; 0) thuộc đường thẳng đó