Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi pt đường thẳng AB có dạng \(y=ax+b\)
Do đường thẳng AB qua A và B nên ta có:
\(\left\{{}\begin{matrix}2a+b=3\\-a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Phương trình AB: \(y=2x-1\) \(\Rightarrow\) hệ số góc \(a=2\)
b. Thay tọa độ C vào pt AB:
\(-1=2.0-1\) (thỏa mãn)
\(\Rightarrow C\) thuộc đường thẳng AB hay 3 điểm A;B;C thẳng hàng
Xét A có: x=1 ; y=-1
=> a=y/x = -1/1 =-1
Xét B có: x=2 ; y=1
=> a=y/x=1/2=0.5
Xét c có : x=4 ; y=5
=> a=y/x=5/4=1.25
Vì a khác nhau nên A;B;C không thẳng hàng
Bạn tìm đường thẳng đi qua 2 điểm A và B là \(\frac{x-x_a}{x_b-x_a}=\frac{y-y_a}{y_b-y_a}\)rồi thay tọa độ điểm C vào thấy k thỏa mãn phương trình đường thẳng thì => 3 điểm này k thẳng hàng
Gọi phương trình đường thẳng AB là \(d:y=ax+b\)
Vì d đi qua \(A\left(2;4\right)\) \(\Rightarrow2a+b=4\)
Vì d đi qua \(B\left(-3;-1\right)\) \(\Rightarrow-3a+b=-1\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) \(\Rightarrow d:y=x+2\)
Thay \(C\left(-2;1\right)\) vào \(y=x+2\) ta thấy: \(-2+2\ne1\)
\(\Rightarrow C\notin AB\)
Vậy A, B, C không thẳng hàng
\(\overrightarrow{AB}=\left(-3;-6\right)\)
\(\overrightarrow{AC}=\left(-1;-3\right)\)
Vì \(\dfrac{-3}{-1}< >\dfrac{-6}{-3}\)
nên A,B,C không thẳng hàng