Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 29 - 1 = 83 - 1 = (8 - 1)(82+8+1) = 7*73 chia hết cho 73.
b) 56 - 104 = 54*(52 - 24) = 54 *(25 - 16) = 54 *9 chia hết cho 9.
a: \(=\left(2^3-1\right)\left(2^6+2^3+1\right)=73\cdot7⋮73\)
b: Đề sai rồi bạn
29 đồng dư với 1(mod 73)
=>29-1 đồng dư với 0(mod 73)
=>29-1 chia hết cho 73
=>đpcm
\(1;\)
\(a,2^{12}+1=\left(2^4\right)^3+1^3=\left(2^4+1\right)\left(2^8-2^4+1\right)=17.\left(2^8-2^4+1\right)⋮17\)
\(b,3^9-8=\left(3^3\right)^3-2^3=\left(27-2\right)\left(3^6+3^3.2+4\right)⋮25\)
\(c,173^n-73^n⋮\left(173-73\right)=100\)
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Bài 8:
a) Ta có: \(2^9-1=\left(2^3-1\right)\cdot\left(2^6+2^3+1\right)\)
\(=7\cdot\left(64+8+1\right)=7\cdot73⋮73\)(đpcm)
b) Ta có: \(5^6-10^4=5^4\cdot5^2-5^4\cdot2^4=5^4\left(5^2-2^4\right)\)
\(=5^4\left(25-16\right)=5^4\cdot9⋮9\)(đpcm)
c) Ta có: \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\cdot\left(2n+2\right)=4\cdot2\cdot\left(n+1\right)=8\left(n+1\right)⋮8\)(đpcm)
d) Ta có: \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12\cdot2n=24n⋮24\)(đpcm)