K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tham khảo câu b bài 1 ở link này https://olm.vn/hoi-dap/detail/88152567739.html

19 tháng 3 2016

bài này cũng dễ thôi bạn ạ

gọi a là 1 số chẵn

=>a+1;a+3;a+5;a+7 là số lẻ

=> tổng của 4 số lẻ liên tiếp là : a+1+a+3+a+5+a+7

                                = 4a+16

                                =4(a+4)

có 1 số chia hết cho 8 thì chia hết cho 2 và 4

        mà 4 chia hết cho 4 

          và (a+4) chia hết cho 2 (do a là số chẵn)

=> tổng của 4 số lẻ liên tiếp chia hết cho 8

19 tháng 3 2016

tại sao a là số chẵn z bạn?

17 tháng 9 2017

a) ta có : \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55⋮55\)

\(\Rightarrow7^4.55\) chia hết cho \(55\) \(\Leftrightarrow7^6+7^5-7^4\) chia hết cho \(55\)

vậy \(7^6+7^5-7^4\) chia hết cho \(55\) (đpcm)

b) ta có \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.\left(32+1\right)=2^{15}.33⋮33\)

\(\Rightarrow2^{15}.33\) chia hết cho \(33\) \(\Leftrightarrow16^5+2^{15}\) chia hết cho \(33\)

vậy \(16^5+2^{15}\) chia hết cho \(33\) (đpcm)

c) ta có \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}\)

\(=3^{22}\left(3^6-3^5-3^4\right)=3^{22}\left(729-243-81\right)=3^{22}.405⋮405\)

\(\Rightarrow3^{22}.405\) chia hết cho \(405\) \(\Leftrightarrow81^7-27^9-9^{13}\) chia hết cho \(405\)

vậy \(81^7-27^9-9^{13}\) chia hết cho \(405\) (đpcm)

17 tháng 9 2017

\(a.\)

\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55⋮55\)

\(b.\)

\(16^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33⋮33\)

\(c.\)

Ta có : \(405=3^4.5\)

\(\Rightarrow81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5⋮405\)

12 tháng 12 2021

Vì a;a+1;...+a+5 là 6 số tự nhiên liên tiếp

nên \(a\left(a+1\right)\cdot...\cdot\left(a+5\right)⋮6!\)

hay \(a\left(a+1\right)\cdot...\cdot\left(a+5\right)⋮6\)

*Sửa lại đề*

A = 21+ 22+ 23+ 24 + .. + 2100

A = (21+22) + (23+ 24) +...+ (299+ 2100)

A = 2.(1+2) + 23.(1+2) + .. + 299. (1+2)

A = 2.3 + 23. 3 + .. + 299.3

A = 3 . (21 + 23 + .... + 299)

Mà 3 chia hết cho 3 

=> A chia hết cho 3

19 tháng 8 2023

 a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.

 b) 

Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)

c) Cách làm tương tự câu b.

6 tháng 8 2018

dell bik

6 tháng 8 2018

A.Ta có: abcabc = 1000abc + abc = 1001.abc 

Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố) 

=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13

B.Ta có: abcdeg = 1000abc + deg = 2001deg chia hết cho 23 và 29

C.Gọi số có 27chữ số 1 là A
A = 111...1 số có 9chữ số 1) x 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0)
Vì số 111...1 (số có 9cs 1) chia hết cho 9 (tổng các chữ số = 9)
số 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0) chia hết cho 3 (tổng các chữ số = 3)
=> A chia hết cho 9x3=27
Vậy.

3 k nhé..