Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{51}>\frac{1}{100}\)
\(\frac{1}{52}>\frac{1}{100}\)
...
\(\frac{1}{99}>\frac{1}{100}\)
\(\frac{1}{100}=\frac{1}{100}\)
=> S = \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)
Mà số số hạng của S là: (100 - 51) : 1 + 1 = 50 (số)
=> S \(>\frac{1}{100}.50\)
=> S \(>\frac{1}{2}\)
Vậy S > 1/2.
b:
3/2 x 4/3 x 5/4 x ......... x 8/7 x 9/8
Ta loai bo so giong nhau o TS va MS
Ta duoc 9/2
Mình không chắc đã đúng đâu nhưng mình cứ giair thử nhé !
Ta có :
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)+ ... + \(\frac{1}{99}-\frac{1}{100}\)
= \(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)- \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)
= \(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)+ \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)
- \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)x 2
= \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)- \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
= \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)= B
Vậy , A = B
~ Chúc bạn học giỏi ! ~