K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2015

1111...1  81 so 1

chia thanh 9 phan 

1111...1 9 so 1

111...1 : 9 so 1 khi chia cho 9 = mot so la A

111..11chia het 9 vi tong 9 so 1 chia het cho 9

vay khi dat vao phep tinh ta co 

11111...1111 (81 so 1) : 9

= AAAA...AA   9soA

9 so A cung chia dc cho 9 

suy ra 1111...1111 chia het cho 9x9=81 (DPCM)

 

 

1111...1 chia hết 81

=> 1111..1

         81 chữ số 1

=> 1111...1  chia hết cho 9

=>  ( 1111...1 ) chia hết cho 9   ; tổng là 81

vậy 1111...1 chia hết cho 81

7 tháng 2 2016

kho qua kho qua 

7 tháng 2 2016

Đứa nào thấy khó thì đừng có mà trả lời

18 tháng 2 2017

Nếu chia hết cho 81 là chia hết cho 9

Tổng các chữ số của dãy đó là:81*1=81

Ta thấy 81 chia hết cho 9-->Dãy đó chia hết cho 9

Chia hết cho 9 thì cũng sẽ chia hết cho 81

Vậy dãy chia hết cho 81

https://olm.vn/hoi-dap/tim-kiem?q=CMR+s%E1%BB%91+111...111(81+ch%E1%BB%AF+s%E1%BB%91+1)+chia+h%E1%BA%BFt+cho+81.+tr%C3%ACnh+b%C3%A0y+lu%C3%B4n+cho+mik+bn+nh%C3%A9!!!&id=345523

Gọi A=111......1(81chữ số);B=111....1(9chữ số) Đặt C=A:B thì :

C=100.....0(8 chữ số 0)1000.....0(8 chữ số 0)1000...0000(8 chữ số 0)1

gồm 9 chữ số 1 và 64 chữ số 0 , chia hết cho 9

Ta thấy : A =B . C mà B và C cùng chia hết cho 9, vậy A chia hết cho 81 ( đpcm )

11 tháng 8 2016

Để 111....111(gồm 81 chữ số 1) chia hết cho 81  => 111....111(gồm 81 chữ số 1) cũng chia hết cho 9

Mặt khác: 1 + 1 + 1 +....+ 1 + 1 + 1 = 1 x 81 = 81 = 92 chia hết cho 9

=> 111....111(gồm 81 chữ số 1) chia hết cho 81

8 tháng 9 2016

:  Ta có đặt A = 11..11 ( 9 chữ số 1) 
Suy ra Ta có A chia hết cho 9 -> Giả sử A chia cho 9 được B 
Số có 81 chữ số 1 cấu tạo bởi AA...AA ( 9 lần A) khi đem chia cho 9 sẽ được số B..B ( 9 lần B). 
Tổng các chữ số của kết quả phép chia trên là 9 x B chia hết cho 9 
Nên số 1..1 ( 81 chữ số 1) chia hết cho 9 xong lại chia hết cho 9 tiếp nên số 1...1 ( 81 chữ số 1) chia hết cho 81 ( Do 81 = 9 * 9 )

25 tháng 7 2016

\(1.a,10^n-1=100..0-1\)(n chữ số 0)=999..99(n chữ số 9)chia hết cho (vì có tổng bằng 9+9+..+9 chia hết cho 9)

\(b,10^n+8=100..0+8\)(n chữ số 0) = 1000...08.

Tổng các chữ số là: 1+0+0+...+8=9 chia hết cho 9.

2.

25 tháng 7 2016

Tạm thời mik chỉ bik lm bài 1 nên pn thông cảm nhé

1 a) pn thao khảo tại nhé do ở đây có bài giống nên mik gửi link luôn nhé!  http://olm.vn/hoi-dap/question/651590.html

b) Ta có: 10n+8= 1000000000000.......000+8

                               n chữ số 0

=> 10n+8= 10000000000........008

                      n chữ số 8

Ta có tổng các chữ số của 10n+8 bằng:  1+00000000.....000 ( Với n chữ số 0)+8= 1+0+8=9

Vì 9 chia hết cho 9  => 10n+8 chia hết cho 9

16 tháng 9 2023

A = 1111...1 ( gồm 81 chữ số 1 )

=> 1111...1 cũng chia hết 9 ( gồm 81 chữ số 1 )

Mặt khác ta có :

1 + 1 + ... + 1 = 1 . 81 = 81

Ta lại có :

81 = 92 chia hết 9

=> 1111...1 ( gồm 81 chữ số 1 ) chia hết cho 81. đó nha

16 tháng 9 2023

A = 1111...1 ( gồm 81 chữ số 1 )

=> 1111...1 cũng chia hết 9 ( gồm 81 chữ số 1 )

Mặt khác ta có :1 + 1 + ... + 1 = 1 . 81 = 81

Ta có tiếp :

81 = 92 chia hết 9

=> 1111...1 ( gồm 81 chữ số 1 ) chia hết cho 81.

9 tháng 9 2023

 Số đã cho được viết là N = 111...11 (81 chữ số 1)

\(N=10^{80}+10^{79}+...+10^1+10^0\)

\(\Rightarrow10N=10^{81}+10^{80}+...+10^2+10^1\)

\(\Rightarrow9N=10^{81}-1\)

\(\Rightarrow N=\dfrac{10^{81}-1}{9}\)

 Ta chứng minh \(\dfrac{10^{81}-1}{9}⋮81=3^4\) hay \(10^{81}-1⋮3^6\)

 Kí hiệu \(v_p\left(n\right)\) là số mũ đúng của số nguyên tố p trong phân tích tiêu chuẩn của n.

Sử dụng định lý LTE, ta có:

 \(v_3\left(10^{81}-1\right)=v_3\left(10-1\right)+v_3\left(81\right)\) \(=2+4=6\)

 Do đó \(10^{81}-1⋮3^6\), ta có đpcm.

 (Bạn có thể tìm hiểu thêm về định lý LTE trên mạng nhưng bạn sẽ không được dùng nó vào chương trình lớp 6 đâu. Bạn có thể cm điều này bằng cách phân tích \(10^{81}-1\) thành tích của các số nhưng sẽ hơi lâu.)

AH
Akai Haruma
Giáo viên
10 tháng 9 2023

Lời giải:

Ta có:

\(\underbrace{111....1}_{81}=\underbrace{11...1}_{9}\times 10^{72}+\underbrace{11...1}_{9}\times 10^{63}+\underbrace{111...1}_{9}\times 10^{54}+....+\underbrace{11...1}_{9}\times 10^0\)

\(=\underbrace{111....1}_{9}(10^{72}+10^{63}+...+10^0)\)

\(=\underbrace{111...1}_{9}\times 1\underbrace{0...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\)

Ta thấy thừa số thứ nhất chia hết cho 9 (do tổng các chữ số bằng 9). Thừa số thứ 2 cũng chia hết cho 9 (do tổng các chữ số chia hết cho 9)

Do đó tích 2 thừa số trên chia hết cho $9.9=81$

Ta có điều phải chứng minh.