K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2015

Gọi d là UCLN(n;n+1)
Suy ra: n chia hết cho d; n+1 chia hết cho d (1)
=> (n+1)-n chia hết cho d
=> 1 chia hết cho d  (2)
Từ (1) và (2) => d=+1
Vậy n/n+1 là phân số tối giản

10 tháng 4 2015

vì n và n+1 là hai số nguyên tố cùng nhau

Gọi d=ƯCLN(n+1;n)

=>\(\left\{{}\begin{matrix}n+1⋮d\\n⋮d\end{matrix}\right.\)

=>\(n+1-n⋮d\)

=>\(1⋮d\)

=>d=1

=>ƯCLN(n+1;n)=1

=>\(\dfrac{n+1}{n}\) là phân số tối giản

17 tháng 1 2016

giả sử d là UCLN của n+1 và 2n+3

=>n+1 chia het cho d 

=> 2n+2 chia hết cho d

=> 2n+3 chia hết cho d

=>1 chia hết cho d=>d=1

UCLN (n+1;2n+3)=1

=>(n+1) : (2n+3) là phân số tối giản

=> (dpcm)

17 tháng 1 2016

Gọi d là ƯCLN của n+1 và 2n+3 

Ta có: 2.(n+1)=2n+2

Mà 2n+3 - 2n+2 =1 Hay 1 chia hết cho d=> ƯCLN (n+1;2n+3)=1

=> n+1/2n+3 là phân số tối giản

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

AH
Akai Haruma
Giáo viên
5 tháng 2

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
5 tháng 2

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

28 tháng 3 2017

Chưa chắc

Ví dụ: n = 25

= 25 + 1/ 25 +3

= 26 / 28 vẫn còn có thể bằng 13 / 14

=> ĐKTCM(Điều ko thể chứng minh)

28 tháng 3 2017

sai đề ko cm được

đúng thì k

Gọi d=UCLN(n+1;2n+3)

\(\Leftrightarrow2n+3-2n-2⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>UCLN(n+1;2n+3)=1

=>n+1/2n+3 là phân số tối giản