K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2021

Ta có \(2^{p-1}\equiv1\left(\text{mod }p\right)\)

Ta có \(n.2^n\equiv m\left(p-1\right).2^{m\left(p-1\right)}\left(\text{mod }p\right)\Rightarrow n.2^n\equiv-m\equiv1\left(\text{mod }p\right)\)

\(\Rightarrow m=kp-1\left(k\in N\text{*}\right)\)

Vậy với \(n=\left(kp-1\right)\left(p-1\right)\left(k\in N\text{*}\right)\) thì \(n.2^n-1⋮p\)

28 tháng 12 2021

Chị em mãi đỉnh ạvui!! Cơ mà không dám giấu gì chị là em ko hiểu đâu ạ:( Chị có thể làm chi tiết hơn đc chị vì em rất thiểu năng ạ.

 

22 tháng 8 2015

Toán lớp 6Phân tích thành thừa số nguyên tố

Đinh Tuấn Việt 20/05/2015 lúc 22:51

Theo đề bài ta có: 

 a = p1. p2n $\Rightarrow$⇒ a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.

nguyên 24/05/2015 lúc 16:50

Theo đề bài ta có: 

 a = p1. p2n $$

 a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$$

 m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 0

Captain America

22 tháng 8 2015

Có 21 ước

16 tháng 11 2019

mình thấy hơi khó

11 tháng 11 2020

a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3

Tương tự, ta được q2-1 chia hết cho 3

Suy ra: p2-q2 chia hết cho 3(1)

Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8

Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8

Suy ra :p2-qchia hết cho 8(2)

Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24

11 tháng 3 2017

dài thế ai mà làm được

5 tháng 4 2017
ai tk mk thì mk tk lại
20 tháng 7 2018

do m ;m+k ; m+2k là số nguyên tố >3

=> m;m+k;m+2k lẻ

=> 2m+k chẵn =>⋮⋮ 2

mặt khác m là số nguyên tố >3 

=> m có dạng 3p+1 và 3p+2(p∈ N*)

xét m=3p+1

ta lại có k có dạng 3a ;3a+1;3a+2(a∈ N*)

với k=3a+1 ta có 3p+1+2(3a+1)=3(p+1+3a) loại vì m+2k là hợp số 

với k=3a+2 => m+k= 3(p+a+1) loại

=> k=3a

tương tự với 3p+2

=> k=3a

=> k⋮3

mà (3;2)=1

=> k⋮6

20 tháng 7 2018

Do m , m + k  , m+2k là số nguyên tố > 3 

=> m , m+k , m+2k lẻ

=> 2m+k chẵn  => k chia hết cho 2

Mặt khác m là số nguyên tố > 3 

=> m có dạng 3p+1 và 3p +2 ( p thuộc N* )

xét m = 3p + 1

Ta lại có k có dạng 3a ; 3a+1 ; 3a+2 ( a thuộc N* )

Với k = 3a+1  ta có 3p +1+2 ( 3a +1) = 3(p+1+3a)loại vì m+2k là hợp số 

Với k = 3a+ 2 => m+k = 3(p+a+1) loại 

=> k=3a

Tương tự vs 3p +2 

=> k=3a

=> k chia hết cho 3

Mà (3;2) = 1

Nên => k chia hết cho 6

8 tháng 4 2015

Giả sử m;n;p không có số nào chia hết cho 3

=> m ; n;p có dạng 3k +1 hoặ 3k + 2 (k thuộc N) 

=> m^2;n^2;p^2 có dạng 3x + 1(X thuộc N)

=> n^2 + p^2 cia 3 dư 2

Mà m^2 chia 3 dư 1 

=> m^2 khác n^2 + p^2 ( trái vói giả thiết )

Vậy m;n;p có ít nhất1 số chia hết cho 3

=>m*n*p chia hết cho 3                                (1)

Chứng minh tương tự :

m*n*p chia hếu cho 5                                    (2)

Từ (1) và (2) và  (3;5)=1

=>m*n*p chia heetscho 3*5 =15