Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN(2n+3,2n+5)=d
Ta có:2n+3 chia hết cho d
2n+5 chia hết cho d
=>(2n+5)-(2n+3) chia hết cho d
=>2 chia hết cho d
=>d={1,2}
Mà 2n+3 là số lẻ nên không chia hết cho 2
=>d=1
Vậy 2 số (2n+3) và (2n+5) nguyên tố cùn nhau với bất kì số tự nhiên n
Gọi UCLN(2n+3,2n+5)=d
Ta có:2n+3 chia hết cho d
2n+5 chia hết cho d
=>(2n+5)-(2n+3) chia hết cho d
=>2 chia hết cho d
=>d={1,2}
Mà 2n+3 là số lẻ nên không chia hết cho 2
=>d=1
Vậy 2 số (2n+3) và (2n+5) nguyên tố cùn nhau với bất kì số tự nhiên n
Gọi a là ƯCLN ( n+3 ; 2n+5 ) ĐK( n thuộc N(ko biết ghi dấu thuộc)
Ta có n+3 chia hết cho a và 2n+5 chia hết cho a
Suy ra: 2(n+3) chia hết cho a và 2n+5 chia hết cho a
Suy ra: 2n+6 chia hết cho a
Suy ra: (2n+6)-(2n+5) chia hết cho a
Suy ra: 1 chia hết cho a
Suy ra: n+3 và 2n+5 là NTCN
Gọi d là ƯCLN(n+3;2n+5)
Ta có n+3 chia hết cho d; 2n+5 chia hết cho d
=>n+3-2n+5 chia hết cho d
=>2n+6-2n+5=1 chia hết cho d
=>ƯCLN(N+3;2n+5)=1
Vậy n+3 và 2n+5 là 2 nguyên tố cùng nhau
Gọi d là ước chung nguyên tố (d thuộc N) của 2n+5 và n+2, ta có:
(2n+5) chia hết cho d và (n+2) chia hết cho d
Từ (n+2) chia hết cho d => 2(n+2) cũng chia hết cho d
Ta có: (2n+5) chia hết cho d và 2(n+2) chia hết cho d => (2n+5) - 2(n+2) = 1 chia hết cho d
=> d = 1 => 2n+5 và n+2 nguyên tố cùng nhau
Gọi d là USC của n+2 và 2n+5 suy ra
\(n+2⋮d\Rightarrow2\left(n+2\right)=2n+4⋮d\)
\(2n+5⋮d\)
\(\Rightarrow\left(2n+5\right)-\left(2n+4\right)=1⋮d\Rightarrow d=1\)
Kết luận: n+2 và 2n+5 là số nguyên tố cùng nhau
gọi d là ƯCLN(2n+3;n+1)
Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)
2n+3 chia hết cho d(2)
Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d
hay 1 chia hết cho d
Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
n+3 chia hết cho d
2n+5 chia hết cho d
2n+3 chia hết cho d
2n+6 chia hết cho d
2n+6-2n+5 chia hết cho d
(2n-2n)+(6-5)
1 chia hết cho d
=>n+3 và 2n+5 là 2 số nt cùng nhau
tk cho mình nha
ủa, tại sao theo đề là có n+3 sao lúc giải lại ghi là 2n+3 còn ko giải thích nữa
Gọi d là là ước chung lớn nhất của ( n+3) và ( 2n+5)
Có (n+3) chia hết cho d.Suy ra (n+3)x2 chia hết cho d= (2n+6) chia hết cho d
Có (2n +5) chia hết cho d. Suy ra (2n+ 5) chia hết cho d
Suy ra : (2n+6) - (2n+5) chia hết cho d
2n+6 - 2n-5 chia hết cho d
1 chia hết cho d
Có chia hết cho d suy ra d thuộc{ 1:-1}
Vì d là số tự nhiên nên d =1
Vậy ( n+3) và (2n+5) là số nguyên tố cùng nhau
CHÚC BẠN HỌC GIỎI
bye mấy anh em nha!