K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

n^3+3n^2+2n

=n(n^2+3n+2)

=n(n+1)(n+2)

n;n+1;n+2 là 3 số liên tiếp

=>n(n+1)(n+2) chia hết cho 3!

=>n^3+3n^2+2n chia hết cho 6

13 tháng 9 2017

1) Đặt A = n^5 - n = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n - 1)(n + 1)(n^2 + 1) 
Nếu n chia hết cho 5 ta dễ thấy đpcm 
Nếu n : 5 dư 1 => n = 5k + 1 
=> A = n.(5k + 1 - 1)(n + 1)(n^2 + 1) = n.5k.(n + 1)(n^2 + 1) chia hết cho 5 
Nếu n : 5 dư 2 => n = 5k + 2 
=> A = n(n - 1)(n + 1)[(5k + 2)^2 + 1] = n(n - 1)(n + 1)(25k^2 + 20k + 5) 
= 5n(n - 1)(n + 1)(5k^2 + 4k + 1) chia hết cho 5 
Nếu n : 5 dư 3 => n = 5k + 3 
=>A = n(n - 1)(n + 1)(25k^2 + 30k + 10) = 5n(n - 1)(n + 1)(5k^2 + 6k + 2) chia hết cho 5 
Nếu n : 5 dư 4 => n = 5k + 4 
=> A = n(n - 1)(5k + 5)(n^2 + 1) = 5n(n - 1)(k + 1)(n^2 + 1) chia hết cho 5 
Vậy trong tất cả trường hợp n^5 - n luôn chia hết cho 6 

2) Đặt B = n^3 - 13n = n^3 - n -12n = n(n - 1)(n + 1) - 12n 
Ta có : Trong 3 số nguyên liên tiếp tồn tại ít nhất 1 số chẵn và tồn tại ít nhất một số chia hết cho 3 nên tích của 3 số đó chia hết cho 2 và chia hết cho 3 mà (2;3) = 1 nên tích 3 số nguyên liên tiếp chia hết cho 6 
=> n(n - 1)(n + 1) chia hết cho 6 mà 12n chia hết cho 6 
=> n^3 - n chia hết cho 6 

3) n^3 + 23n = n^3 - n + 24n = n(n - 1)(n + 1) + 24n 
Tương tự câu 2 : n(n - 1)(n + 1) và 24n chia hết cho 6 
=> n^3 + 23n chia hết cho 6 

4)Đặt A = n(n + 1)(2n + 1) = n(n + 1)[2(n - 1) + 3] 
= 2n(n + 1)(n - 1) + 3n(n + 1) 
n(n + 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
2n(n + 1)(n - 1) chia hết cho 2 
=> A chia hết cho 2 
n(n + 1)(n - 1) là tích 3 số nguyên liên tiếp nên chia hết cho 3 
3n(n + 1) chia hết cho 3 
=> A chia hết cho 3 
Mà (2 ; 3) = 1 (nguyên tố cùng nhau) 
=> A chia hết cho 6 

5) Đặt A = 3n^4 - 14n^3 + 21n^2 - 10n 
Chứng minh bằng quy nạp 
Với n =1 => A = 0 chia hết cho 24 
Giả sử A chia hết 24 đúng với n = k 
Nghĩa là :A(k) = 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 
Ta phải chứng minh : 
A chia hết cho 24 đúng với n = k + 1 
Nghĩa là : 
A(k + 1) = 3(k + 1)^4 - 14(k + 1)^3 + 21(k + 1)^2 - 10(k + 1) 
Khai triển ta được : 
A = (3k^4 - 14k^3 + 21k^2 - 10k) + (12k^3 - 24k^2 + 12k) 
Ta phải chứng minh : 12k^3 - 24k^2 + 12k chia hết 24 
12k^3 - 24k^2 + 12k = 12k(k^2 - 2k + 1) 
= 12k(k - 1)^2 = 12k(k - 1)(k - 1) 
12 chia hết 12 
k(k - 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
=> 12k^3 - 24k^2 - 2k + 1 chia hết cho 24 
Mà 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 (giả thiết quy nạp) 
=> A(k + 1) chia hết 24 
Theo nguyên lý quy nạp => A chia hết cho 24 (đpcm) 

6) n = 2k + 1 với k thuộc Z 
A = n^2 + 4n + 3 = (2k + 1)^2 + 4(2k + 1) + 3 
= 4k^2 + 12k + 8 
= 4(k^2 + 3k + 2) 
= 4(k + 2k + k + 2) 
= 4(k + 1)(k + 2) 
4 chia hết cho 4 
(k +1)(k + 2) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
=> n^2 + 4n + 3 chia hết cho 4.2 = 8 với n lẻ 

7) n = 2k + 1 
Đặt A = n^3 + 3n^2 - n - 3 
= (2k + 1)^3 + 3(2k + 1)^2 - (2k + 1) - 3 
= 8k^3 + 24k^2 + 16k 
= 8k(k^2 + 3k + 2) 
= 8k(k^2 + k + 2k + 2) 
= 8k(k + 1)(k + 2) 
8 chia hết cho 8 
k(k + 1)(k + 2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6 
=> A chia hết cho 8.6 = 48 với n lẻ

4 tháng 4 2015

Ta có 2n3 + 3n2 + n = n(n + 1)(2n + 1)

Vì n và n + 1 là 2 số nguyên liên tiếp nên n(n + 1) chia hết cho 2 nên n(n + 1)(2n + 1) chia hết cho 2 (1)

Vậy để 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết cho 6 ta cần chứng minh n(n + 1)(2n + 1) chia hết cho 3

Thật vậy

Ta có TH1: n = 3k + 1 (k thuộc Z)

=> (3k + 1)(3k + 2)(6k + 3) chia hết cho 3

         TH2: n = 3k + 2 (k thuộc Z)

=> (3k + 2)(3k + 3)(6k + 5) chia hết cho 3

=> n(n + 1)(2n + 1) chia hết cho 3 (2)

Từ (1) và (2) suy ra 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết 2.3 = 6 với mọi số nguyên n

2 tháng 1 2017

bạn àm theo cách đòng dư thức á. Nếu bạn không biết làm thì nhắn xuống dưới mình giải dùm

21 tháng 10 2018

kết bạn nhé

21 tháng 10 2018

kết bạn nhé

a: \(=n^2+5n-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6⋮6\)

b: \(=\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)

\(=5n^2+5n⋮5\)

c: \(=6n^2+30n+n+5-6n^2-3n-10n-5\)

\(=18n⋮2\)

17 tháng 5 2017

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left[n\left(n+2\right)+\left(n+2\right)\right]=n\left(n+1\right)\left(n+2\right)\)

\(n\left(n+1\right)\left(n+2\right)\) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và cho 3, mà (2,3)=1 nên \(n\left(n+1\right)\left(n+2\right)\) chia hết cho 2.3=6 hay \(n^3+3n^2+2n\) chia hết cho 6 với mọi số nguyên n.

18 tháng 5 2017

Đặt \(A=n^3+3n^2+2n\)

\(A=n^3+3n^2+2n\\ =n^3+n^2+2n^2+2n\\ =n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)=n\left(n+1\right)\left(n+2\right)\)

Vì tích của 3 số tự nhiên liên tiếp nên A chia hết cho 6(đpcm)

8 tháng 9 2020

a,A=(n-1).(n+1)-n^2+3n-5 

= n^2 - 1 - n^2 + 3n - 5

= 3n - 6

= 3(n - 2) chia hết cho 3

b,A=(2n-1).(n+1)-n(2n-4)+21 

= 2n^2 + n - 1 - 2n^2 + 4n + 21

= 5n + 20 = 5(n + 4) chia hết cho5

8 tháng 9 2020

A = ( n - 1 )( n + 1 ) - n2 + 3n - 5

= n2 - 1 - n2 + 3n - 5

= 3n - 6 = 3( n - 2 ) chia hết cho 3 ( đpcm )

A = ( 2n - 1 )( n + 1 ) - n( 2n - 3n ) + 21

= 2n2 + n - 1 - n( -n ) + 21

= 2n2 + n + 20 + n2

= 3n2 + n + 20 ( cái này chưa chắc được :)) )

7 tháng 8 2017

Ta có:\(n^4+3n^3-n^2-3n=n^3.\left(n+3\right)-n.\left(n+3\right)=\left(n+3\right).\left(n^3-n\right)=\left(n+3\right).n.\left(n^2-1\right)=n.\left(n-1\right).\left(n+1\right).\left(n+3\right)⋮6\)b)Ta có:\(\left(2n-1\right)^3-2n+1=\left(2n-1\right).\left(\left(2n-1\right)^2-1\right)=\left(2n-1\right).\left(2n-1-1\right).\left(2n-1+1\right)=2n.\left(2n-1\right).\left(2n-2\right)⋮24\)

18 tháng 9 2021

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)

là tích 3 số tự nhiên liên tiếp nên chia hết cho 3

3 tháng 10 2016

\(2n^3+3n^2+n\)

\(=\left(2n^3+2n^2\right)+\left(n^2+n\right)\)

\(=2n^2\left(n+1\right)+n\left(n+1\right)\)

\(=n\left(n+1\right)\left(2n+1\right)\)

\(n\left(n+1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.

n chia 3 có thể dư 1 ; 2 hoặc không dư.

Nếu không dư, tích chắc chắn chia hết cho 3

Với n = 3k + 1 thì 2n+1 = 2 ( 3k + 1 ) + 1 = 6k + 3 chia hết cho 3

Với n = 3k + 2 thì n + 1 = 3k +2 + 1 = 3k + 3 chia hết cho 3

Do đó tích trên luôn chia hết cho 2 và 3

Mà ( 2 ;3 ) = 1 nên tích chia hết cho 2 . 3 = 6

Vậy ...