K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

Giả sử ∆ABC  cân tại A có hai đường trung tuyến BM và CN, ta chứng minh BM = CN

A B C N G M

Ta có AN = NB = AB/2 (Tính chất đường trung tuyến)

AM = MC = AC/2 (Tính chất đường trung tuyến)

Vì ∆ ABC cân tại A=>  AB = AC nên AM = AN

Xét  ∆BAM ;∆CAN có:

AM = AN  (cm trên)

Góc A chung

AB = AC (∆ABC  cân)

Nên suy ra ∆BAM = ∆CAN (c-g-c)

=> BM = CN ( 2 cạnh tương ứng)

19 tháng 3 2017

bạn giỏi quá

26 tháng 4 2016
 
  •  
  • MÔN ĐẠI CƯƠNG
  • ÔN THI ĐẠI HỌC
  • TOÁN HỌC
  • NGỮ VĂN
  • ANH VĂN
  • VẬT LÝ
  • HÓA HỌC
  • SINH HỌC
  • LỊCH SỬ
  • ĐỊA LÝ
  • TRUYỆN CỔ TÍCH
  • Sóng - Xuân Quỳnh hot
  • Đàn ghi ta của Lor-ca - Thanh Thảo hot
TOÁN HỌCToán lớp 7

Bài 42 trang 73 sgk toán lớp 7- tập 2

Cập nhật lúc: 08/07/2014 17:21 pm Danh mục: Toán lớp 7

  Chứng minh định lí
  • Bài 38 trang 73 sgk toán lớp 7- tập 2
  • Bài 40 trang 73 sgk toán lớp 7- tập 2
  • Bài 36 trang 72 sgk toán lớp 7- tập 2
  • Bài 42 trang 73 sgk toán lớp 7- tập 2
  • Bài 39 trang 73 sgk toán lớp 7- tập 2

Xem thêm: Tính chất ba đường phân giác của tam giác

  

42. Chứng minh định lí : Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân

Gợi ý : Trong ∆ABC, nếu AD vừa là đường trung tuyến vừa là đường phân giác thì kéo dài AD một đoạn AD1 sao cho DA1 = AD

Hướng dẫn:

Giả sử  ∆ABC có AD là phân giác  và DB = DC, ta chứng minh  ∆ABC  cân tại A

Kéo dài AD một đoạn DA1 = AD

Ta có:   ∆ADC =  ∆A1DC (c.g.c)

Nên 

mà  (gt)

=> 

=>   ∆ACAcân tại C

Ta lại có: AB = A1C ( ∆ADB = ∆A1DC)

              AC = A1C ( ∆ACAcân tại C)

=> AB = AC

Vậy  ∆ABC cân tại A

Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân

 

 

 
13 tháng 4 2016

Xét hai tam giác vuông EBC và FCB có:

BC (cạnh huyền chung)

BE = CF

Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

=> 

hay  ∆ABC cân tại A

+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng minh được đó là tam giác đều.

 

18 tháng 4 2016

∆ABC vuông tại A => BC= AB+ AC2

BC2 = 3+ 42

BC2 = 25

BC = 5

B A C M

Gọi M là trung điểm của BC => AM là trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM = 1/2 BC

Vì G là trọng tâm của ∆ ABC nên AG = 2/3 AM AM => AG = 2/3.1/2 BC

=> AG = 1/3 BC = 1/3.5 = 1.7cm

9 tháng 5 2017

bạn tự vẽ hình nhé

a)Ta có: AB=AC (tam giác ABC cân tại A)

mà BN=AB/2 (dường trung tuyến CN)

và CM=AC/2 (đường trung tuyến BM)

=>BN=CM

Xét tam giác BNC và tam giác CMB, có:

BC chung

BN=CM (cmt)

góc NBC=góc MCB (tam giác ABC cân tại A)

=> tam giác BNC=tam giác CMB (c.g.c)

b)Ta có: góc NCB=góc MBC (tam giác BNC= tam giác CMB)

=> tam giác KBC cân tại K

c)Xét tam giác ABC có

N là trung điểm của AB (đường trung tuyến CN)

và M là trung diểm của AC (đường trung tuyến BM)

=>NM là đường trung bình của tam giác ABC

=>NM=BC/2

mà NM<NK+KM ( bất đẳng thức cạnh trong tam giác)

=>BC/2<NK+KM

mà NK=CN-CK

=> BC/2<CN-CK+KM

mà CN=BM (tam giác BNC = tam giác CMB)

và CK=BK (tam giác KBC cân tại K)

=>BC/2<BM-BK+KM

=>BC/2<2KM

=>BC<4KM

27 tháng 6 2017

27 tháng 12 2019

19 tháng 2 2018

Đáp án D

4 tháng 7 2017

Đáp án B

29 tháng 12 2018

Đáp án B