Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: -(-a+b+c)+(b+c-1)= a-b-c+b+c-1=a-1 (1)
(b-c+6)-(7-a+b)+c= b-c+6-7+a-b+c=a-1 (2)
Từ (1),(2) => -(-a+b+c)+(b+c-1)=(b-c+6)-(7-a+b)+c
Vế trái = -(-a+b+c)+(b+c-1)
= a-b-c+b+c-1
= a+(-b+b)+(-c+c)-1
= a+0+0-1
= a-1
Vế phải = (b-c+6)-(7-a+b)+c
= b-c+6-7+a-b+c
= (b-b)+(-c+c)+(6-7)+a
= 0+0-1+a
= a-1
- Vậy -(-a+b+c)+(b+c-1)=(b-c+6)-(7-a+b)+c
VT=\(-\left(-a+b+c\right)+\left(b+c-1\right)\)
\(=a-b-c+b+c-1\)
=a-1
\(VP=\left(b-c+6\right)-\left(7-a+b\right)+c\)
\(=b-c+6-7+a-b+c\)
=a-1
=>VT=VP
=>\(-\left(-a+b+c\right)+\left(b+c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\)
a(b+c) - b(a-c) = ab + ac - ab + bc = ac + bc = c(a+b ) (d9pcm )
Ta có :
\(a\left(b+c\right)-b\left(a-c\right)\)
\(=a.b+a.c-b.a+b.c\)
\(=\left(a.b-b.a\right)+\left(a.c+b.c\right)\)
\(=a.c+b.c=\left(a+b\right).c\)
Vậy \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\left(ĐPCM\right)\)
Ủng hộ mk nha !!! ^_^
(a+b-c)-(a-b+c)+(b+c-a)-(b-a-c)
= a+b-c-a+b-c+b+c-a-b+a+c
=(a-a-a+a)+(b+b+b-b)+(-c-c+c+c)
= 0 + ( b+b) + 0
= 2b
xong oy đó , nhớ mink đấy
Phá ngoặc
a - (b - c) = a - b + c = (a - b) + c => ĐPCM ở V1
= (a + c) - b => ĐPCM ở V2
Từ V1 và V2 => ĐPCM ở 2 vế
-a(b-c)-b(c-a)=-ab+ac-bc+ba=(-ab+ba)-(bc-ac)=0-c(b-a)=-c(b-a)
Xét:
-a.( b - c ) - b.( c - a ) + c.( b - a )
= -a.b + a.c - b.c + b.a + c.b - c.a
=( -a.b + b.a )+( a.c - c.a ) + ( -b.c + c.b )
=0 + 0 + 0
=0
=> -a.( b - c ) - b.( c - a ) = -c.( b - a )
https://olm.vn/hoi-dap/detail/187444543773.html
Tham khảo link này nhé ( Ở mục câu hỏi tương tự á)
Bài làm
Biến đổi vế trái, ta đc:
Vế trái = -a( b - c ) - b( c - a )
= -ab + ac - bc + ab
= ( ab - ab ) + ( ac - bc )
= ac - bc
= -bc + ac
=-c( b - a ) = vế phải
Vậy -a( b - c ) - b( c - a ) = -c( b - a ) ( đpcm )
ta có:a(b−c)−a(b+d)=−a(c+d)
VT(vế trái)=a(b−c)−a(b+d)
=ab−ac−ab−ad
=(ab−ab)−ac−ad
=0−a(c+d)
=−a(c+d)=VP(vế phải)
-AB + AC - BC + BA = - CB + CA
AC - BC = CA - CB ( ĐCT)