K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

11 tháng 11 2017

x2 +y2 +z2 -2xy-2zx-2yz=(x-y-z)2 -4yz=(x-y-z)2 - \(2.\sqrt{yz^2}\)=\(\left(x-y-z-2\sqrt{yz}\right)+\left(x-y-z+2\sqrt{yz}\right)\)

x2 -2xy - y2 -z2 =(x-y)2 -z2 =(x-y-z)(x-y+z)

a) Ta có: \(VT=\left(x-y-z\right)^2\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)

\(=x^2+y^2+z^2-2xy+2yz-2xz\)

=VP(đpcm)

b) Ta có: \(VT=\left(x+y-z\right)^2\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

=VP(đpcm)

c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)

Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=VP(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

=VP(đpcm)

20 tháng 7 2020

a, b, nhân vào là ra à

c, nghe cứ là lạ

d, cũng nhân là ra hà

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)

3 tháng 12 2019

x 2 - 2 x y + y 2 - z 2 = x - y 2 - z 2  = (x – y + z)(x – y − z)

y 2 - 2 y z + z 2 - x 2 = y - z 2 - x 2  = (y – z + x)(y – z − x) = -(x +y – z)(x – y + z)

z 2 - 2 z x + x 2 - y 2 = z - x 2 - y 2  = (z – x + y)(z – x -y) = (x- y –z).(x + y – z)

MTC = (x – y + z)(x + y − z)(x – y − z)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

14 tháng 7 2016

 =[(x+y)+z]2

=(x+y)2+2(x+y)z+z2

=x2+2xy+y2+2xz+2yz+z2

=x2+y2+z2+2xy+2yz+2xz

a) Ta có: \(VP=x^2+y^2+z^2-2xy+2yz-2zx\)

\(=\left(x^2-xy-xz\right)+\left(y^2-xy+yz\right)+\left(z^2-yz-zx\right)\)

\(=x\left(x-y-z\right)+y\left(y-x+z\right)+z\left(z-y-x\right)\)

\(=x\left(x-y-z\right)-y\left(x-y-z\right)-z\left(x-y-z\right)\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=\left(x-y-z\right)^2=VT\)(đpcm)

b) Ta có: \(VP=x^2+y^2+z^2+2xy-2yz-2zx\)

\(=\left(x^2+xy-zx\right)+\left(y^2+xy-2yz\right)+\left(z^2-yz-zx\right)\)

\(=x\left(x+y-z\right)+y\left(x+y-z\right)+z\left(z-y-x\right)\)

\(=\left(x+y-z\right)\left(x+y\right)-z\left(x+y-z\right)\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=\left(x+y-z\right)^2=VT\)(đpcm)

c) Ta có: \(VP=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)=VT\)(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5=VP\)(đpcm)

30 tháng 6 2017

\(B=\dfrac{\left(x+y+z\right)^2}{x^2-\left(y^2+2yz+z^2\right)}=\dfrac{\left(x+y+z\right)^2}{x^2-\left(y+z\right)^2}\)

\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x-y-z\right)}=\dfrac{x+y+z}{x-y-z}\)