K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

Ta có x2-x+1/2 = x2-2x1/2+1/4+1/4=(x-1/2)+1/4 > 0 mọi x

cách giải lớp 8

11 tháng 4 2021

f(x)=x2+x+1=x2+\(\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

      =\(x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)

      =\(\left(x+\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^{^2}+\dfrac{3}{4}\)

=>f(x)≥\(\dfrac{3}{4}\)

=>đa thức trên vô nghiệm

11 tháng 4 2021

Bài này có nhiều cách, vừa rồi là cách cơ bản, còn nếu bạn muốn nâng cao chút thì có thể dùng cách này nha:

Xét x≥0 thì x+1>0

       x(x+1)≥0=>x(x+1)+1>0 =>x2+x+1>0                               (1)

Xét -1<x<0 thì x+1≤0. Ta lại có x2≥0 nên x2+x+1 >0                   (2)

Xét x≤-1 thì x<0 và x+1≤0. Do đó

    x(x+1) ≥0=>x(x+1) +1>0=>x2+x+1>0                           (3)

Từ (1), (2), (3)=> đa thức f(x) vô nghiệm

Bài 2: 

a: Sửa đề: \(x^2+2x+3\)

Đặt \(x^2+2x+3=0\)

\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)

Do đó: Phương trình vô nghiệm

b: Đặt \(x^2+4x+6=0\)

\(\Leftrightarrow x^2+4x+4+2=0\)

\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)

giúp em bài 1 với 3 nữa đc không ạaaa?

\(M=x^2+8x+16+1=\left(x+4\right)^2+1>0\)

Do đó: M vô nghiệm

8 tháng 5 2022

\(\text{∆}=5^2-4.9\)

\(=25-36=-11< 0\)

⇒ phương trình vô nghiệm

8 tháng 5 2022

ta có x2 ≥0

5x≥0

mà 9 > 0

\(=>x^2+5x+9>0\)

hay chứng tỏ đa thức vô nghiệm

10 tháng 4 2021

Bằng 2 cách

10 tháng 4 2021

f(x) đề có cho bằng 0 không vậy em ? 

27 tháng 4 2019

\(x^2+x+1\)

\(=x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(=\left(x+\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có \(\left(x+\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow x^2+x+1>0\)

=> đa thức trên vô nghiệm

27 tháng 4 2019

Xét 3 trường hợp

Xét x=0

\(\Rightarrow o^2+0+1=1>0\)\(0\)

\(\Rightarrow\)Với x=0 thì đa thức \(x^2+x+1>0\left(1\right)\)

Xét x>0

\(\Rightarrow x^2\ge0\forall x\)

mà x+1>0

\(\Rightarrow\)\(x^2+x+1>0\forall x>0\)(2)

Xét x<0

\(\Rightarrow\)\(\left(-x\right)^2\ge0\forall x\)<0

\(\Rightarrow x^2-x\ge0\forall x\)<0

mà 1>0

\(\left(-x\right)^2-x+1>0\forall x\)<0

Với x<0 thì \(x^2+x+1>0\forall x< 0\left(3\right)\)

Từ (1);(2) ;(3) \(\Rightarrow\)\(x^2+x+1>0\forall x\)

Vậy\(^{x^2+x+1}\)vô nghiệm

13 tháng 5 2015

-x^2 và x không thể là 2 số đối nhau(chẳng hạn -5^2 và 5) vậy lời giải của bạn sai

 

17 tháng 5 2018

Bạn dò lại đề nha