Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-2\right|+\left|x^2-4x+3\right|=0\)
\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|x^2-4x+3\right|\ge0\end{cases}\text{dấu }=\text{xảy ra khi }}\)
\(\hept{\begin{cases}\left|x-2\right|=0\\\left|x^2-4x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x^2-4x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\\left(x-1\right).\left(x-3\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=1,x=3\end{cases}}}\)(vô lí)
Vậy phương trình vô nghiệm
p/s: mk ko bt cách trình bài => sai sót bỏ qua
anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
a) \(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow x^4-x^3+x^2+x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\left(ktm\right)\\x^2-x+1=0=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)
b) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow x^4-x^3+x^2-x^3+x^2-x+2x^2-2x+2=0\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)-x\left(x^2-x+1\right)+2\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x+1=0\\x^2-x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\\\left(x-\frac{1}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)
Ta có:
\(VT=\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)\)
\(pt\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)
Mà:
\(x^2+1>0\)
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(x^2-x+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
Vậy pt vô nghiệm
B1.a/ (x-2)(x^2+2x+2)
b/ (x+1)(x+5)(x+2)
c/ (x+1)(x^2+2x+4)
B2.
1a) x3 - 2x - 4 = 0
<=> (x3 - 4x) + (2x - 4) = 0
<=> x(x2 - 4) + 2(x - 2) = 0
<=> x(x - 2)(x + 2) + 2(x - 2) = 0
<=> (x - 2)(x2 + 2x + 2) = 0
<=> x - 2 = 0 (vì x2 + 2x + 2 \(\ne\)0)
<=> x = 2
Vậy S = {2}
b) x3 + 8x2 + 17x + 10 = 0
<=> (x3 + 5x2) + (3x2 + 15x) + (2x + 10) = 0
<=> x2(x + 5) + 3x(x + 5) + 2(x + 5) = 0
<=> (x2 + 3x + 2)(x + 5) = 0
<=> (x2 + x + 2x + 2)(x + 5) = 0
<=> (x + 1)(x + 2)(x + 5) = 0
<=> x + 1 = 0 hoặc x + 2 = 0 hoặc x + 5 = 0
<=> x = -1 hoặc x = -2 hoặc x = -5
Vậy S = {-1; -2; -5}
c) x3 + 3x2 + 6x + 4 = 0
<=> (x3 + x2) + (2x2 + 2x) + (4x + 4) = 0
<=> x2(x + 1) + 2x(x + 1) + 4(x + 2) = 0
<=> (x2 + 2x + 4)(x + 2) = 0
<=> x + 2 = 0
<=> x = -2
Vậy S = {-2}
a ) \(x^4+2x^2-6x+7=0\)
\(\Leftrightarrow x^4-2x^2+1+4x^2-6x+6=0\)
\(\Leftrightarrow\left(x^2-1\right)^2+4x^2-2.2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{15}{4}=0\)
\(\Leftrightarrow\left(x^2-1\right)^2+\left(2x-\dfrac{3}{2}\right)^2=-\dfrac{15}{4}\left(VL\right)\)
=> PTVN
b ) \(\left|x-2\right|\ge0;\left|x^2-4x+3\right|\ge0\forall x\)
\(\Rightarrow\left|x-2\right|+\left|x^2-4x+3\right|\ge0\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x^2-4x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\end{matrix}\right.\)
Lại có : \(\left|x-2\right|+\left|x^2-4x+3\right|=0\) ( * )
Thay \(x=2\) vào ( * ) , ta có :
\(0+\left|2^2-4.2+3\right|=0\)
\(\Leftrightarrow0+\left|4-8+3\right|=0\Leftrightarrow0+1=0\Leftrightarrow1=0\)
( ***** ) (1)
Tương tư thay \(x=1\) \(\Rightarrow1=0\left(VL\right)\) (2)
thay \(x=3\Rightarrow1=0\left(L\right)\) (3)
Từ (1) ; (2) ; (3) \(\Rightarrow PTVN\)