K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018
\(a,\dfrac{2x+2y}{a^2+2ab+b^2}.\dfrac{ax-ay+bx-by}{2x^2-2y^2}\)

\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{a\left(x-y\right)+b\left(x-y\right)}{2\left(x^2-y^2\right)}\)

\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{\left(x-y\right)\left(a+b\right)}{2\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{1}{a+b}\)


\(b,\dfrac{a+b-c}{a^2+2ab+b^2-c^2}.\dfrac{a^2+2ab+b^2+ac+bc}{a^2-b^2}\)

\(=\dfrac{a+b-c}{\left(a+b\right)^2-c^2}.\dfrac{\left(a+b\right)^2+c\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}\)

\(=\dfrac{a+b-c}{\left(a+b-c\right)\left(a+b+c\right)}.\dfrac{\left(a+b\right)\left(a+b+c\right)}{\left(a-b\right)\left(a+b\right)}\)

\(=\dfrac{1}{a-b}\)

\(c,\dfrac{x^3+1}{x^2+2x+1}.\dfrac{x^2-1}{2x^2-2x+2}\)

\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)^2}.\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x^2-x+1\right)}\) \(=\dfrac{x-1}{2}\) \(d,\dfrac{x^8-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4\right)^2-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4-1\right)\left(x^4+1\right)}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^2+1\right)\left(x^2-1\right)}{x+1}.\dfrac{1}{x^2+1}\) \(=\dfrac{\left(x-1\right)\left(x+1\right)}{x+1}\) \(=x-1\) \(e,\dfrac{x-y}{xy+y^2}-\dfrac{3x+y}{x^2-xy}.\dfrac{y-x}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x\left(x-y\right)}.\dfrac{-\left(x-y\right)}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x}.\dfrac{-1}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{-3x-y}{x\left(x+y\right)}\) \(=\dfrac{x\left(x-y\right)+y\left(3x+y\right)}{xy\left(x+y\right)}\) \(=\dfrac{x^2-xy+3xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{x^2+2xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}=\dfrac{x+y}{xy}\)
19 tháng 2 2018

tìm giá trị của m để pt 2x-m=1-x nhận giá trị x=-2 là nghiệm

giải hộ e với :)

21 tháng 1 2022

\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)

b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24

15 tháng 3 2019

3 tháng 4 2018

3 tháng 8 2023

a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)

\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)

\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)

b) \(27x^3-54x^2+36x=9\)

\(\Rightarrow27x^3-54x^2+36x-9=0\)

\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)

\(\Rightarrow\left(3x-2\right)^3-1=0\)

\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)

mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)

\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)

3 tháng 8 2023

(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}

  27\(x^3\) - 54\(x^2\) + 36\(x\) = 9

27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1

(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1

 

 

 

 

 

3 tháng 8 2023

(x - 5)² = (3 + 2x)²

(x - 5)² - (3 + 2x)² = 0

[(x - 5) - (3 + 2x)][(x - 5) + (3 + 2x)] = 0

(x - 5 - 3 - 2x)(x - 5 + 3 + 2x) = 0

(-x - 8)(3x - 2) = 0

-x - 8 = 0 hoặc 3x - 2 = 0

*) -x - 8 = 0

-x = 8

x = -8

*) 3x - 2 = 0

3x = 2

x = 2/3

Vậy x = -8; x = 2/3

--------------------

27x³ - 54x² + 36x = 9

27x³ - 54x² + 36x - 9 = 0

27x³ - 27x² - 27x² + 27x + 9x - 9 = 0

(27x³ - 27x²) - (27x² - 27x) + (9x - 9) = 0

27x²(x - 1) - 27x(x - 1) + 9(x - 1) = 0

(x - 1)(27x² - 27x + 9) = 0

x - 1 = 0 hoặc 27x² - 27x + 9 = 0

*) x - 1 = 0

x = 1

*) 27x² - 27x + 9 = 0

Ta có:

27x² - 27x + 9

= 27(x² - x + 1/3)

= 27(x² - 2.x.1/2 + 1/4 + 1/12)

= 27[(x - 1/2)² + 1/12] > 0 với mọi x ∈ R

⇒ 27x² - 27x + 9 = 0 (vô lí)

Vậy x = 1

3 tháng 8 2023

A = x² + y²

= x² - 2xy + y² + 2xy

= (x - y)² + 2xy

= 4² + 2.1

= 16 + 2

= 18

B = x³ - y³

= (x - y)(x² + xy + y²)

= (x - y)(x² - 2xy + y² + xy + 2xy)

= (x - y)[(x - y)² + 3xy]

= 4.(4² + 3.1)

= 4.(16 + 3)

= 4.19

= 76

C = x⁴ + y⁴

= (x²)² + (y²)²

= (x²)² + 2x²y² + (y²)² - 2x²y²

= (x² + y²)² - 2x²y²

= (x² - 2x²y² + y² + 2x²y²)² - 2x²y²

= [(x - y)² + 2x²y²]² - 2x²y²

= (4² + 2.1²)² - 2.1²

= (16 + 2)² - 2

= 18² - 2

= 324 - 2

= 322

24 tháng 8 2019

a. = \(\left(x^3+x^2\right)+\left(7x^2+7x\right)+\left(10x+10\right)\)

\(x^2\left(x+1\right)+7x\left(x+1\right)+10x\left(x+1\right)\)

\(\left(x+1\right)\left(x^2+7x+10x\right)\)

\(\left(x+1\right)\left(x+2\right)\left(x+5\right)\)