Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề :
\(x^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
\(x^4=\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2+3ab^3+b^4\right)\)
\(x^4=a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(x^4=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(x^4=\left(a+b\right)\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)
\(x^4=\left(a+b\right)\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)
\(x^4=\left(a+b\right)^2\left(a+2ab+b^2\right)\)
\(x^4=\left(a+b\right)^4\)
b) Sửa đề:
\(x^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)
\(x^5=\left(a^5+4a^4b+6a^3b^2+4a^2b^3+ab^4\right)+\left(a^4b+4a^3b^2+6a^2b+4ab^4+b^5\right)\)
\(x^5=a\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)+b\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)
\(x^5=\left(a+b\right)\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)
\(x^5=\left(a+b\right)\left[\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2++3ab^3+b^4\right)\right]\)
\(x^5=\left(a+b\right)\left[a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\right]\)
\(x^5=\left(a+b\right)^2\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(x^5=\left(a+b\right)^2\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)
\(x^5=\left(a+b\right)^2\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)
\(x^5=\left(a+b\right)^3\left(a^2+2ab+b^2\right)\)
\(x^5=\left(a+b\right)^5\)
Bạn có thể tự tóm tắt lại
a/ -(b-a)^3= -(b^3-3b^2a+3ba^2-a^3)
= -b^3+3ab^2a-3ba^2+a^3
= (a-b)^3
b/ tương tự ta dùng hằng đẳng thức để chứng minh
a) a - b = - (b - a) = (-1)*(b - a)
=> (a - b)3 = [(-1)*(b - a)]3 = (-1)3 * (b - a)3 = -(b - a)3
b) -(a + b) = (- a - b)
=> (-1)2 * (a + b)2 = (-a - b)2
=> (-a -b)2 = (a + b)2
a) (a-b)^3=-(b-a)^3
\(Taco:-\left(b-a\right)^3\)
=\(-\left(b-a\right)\left(b-a\right)\left(b-a\right)\)
\(=\left(a-b\right)\left(b-a\right)\left(b-a\right)\)
\(=-\left(a-b\right)\left(a-b\right)\left(b-a\right)\)
\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)=\left(a-b\right)^3\)
\(\left(-a-b\right)^2=\left(-a-b\right)\left(-a-b\right)\)
\(=-\left(a+b\right)\left(-a-b\right)\)
\(=\left(a+b\right)\left(a+b\right)\)
\(=\left(a+b\right)^2\)
(a - b - c)3
= (a - b - c)(a - b - c)(a - b - c)
= a3 + ab2 + ac2 - ba2 - b3 - bc2 - ca2 - cb2 - c3
= (a3 - b3 - c3) + (ab2 - cb2) + (ac2 - bc2) - (ba2 + ca2)
= (a3 - b3 - c3) + b2(a - c) + c2(a - b) - a2(b + c)
tớ chịu rồi bn
1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc
= (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)
= (a+b+c)( a2+b2+c2-ab-bc-ca)
(a+b+c)3=[(a+b)+c]3=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)[ab+c(a+b+c)]
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
==a3+b3+c3+3(a+b)[(ab+ac)+(bc+c2)]
=a3+b3+c3+3(a+b)(a+c)(b+c)
#)Giải :
\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+ca+c^2\right)\)
\(=a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)
\(=\left(a+b^3\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)
\(=\left(a+b+c\right)^3\)
\(\Rightarrowđpcm\)
\(a.\left(a-b\right)^3=-\left(b-a\right)^3\)
\(\Leftrightarrow\left(a-b\right)^3=\left(a-b\right)^3\)
Học tốt!
a) \(-\left(b-a\right)^3=-\left(b-a\right).\left(b-a\right)^2\)
\(=\left(a-b\right)\left(a-b\right)^2=\left(a-b\right)^3\)
b) \(\left(-a-b\right)^2=\left(-a-b\right)\left(-a-b\right)=\left(a+b\right)\left(a+b\right)=\left(a+b\right)^2\)