K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2015

a^3+b^3+c^3-3abc=(a+b)^3-3a^2.b-3a.b^2-3abc=[(a+b)^3+c^3]-3ab(a+b+c)=(a+b+c).[(a+b)^2-c.(a+b)+c^2]-3ab(a+b+c)=(a+b+c).(a^2+2ab+b^2-ac-bc+c^2-3ab)=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)

25 tháng 5 2021

a) \(\dfrac{a^2+a+1}{a^2-a+1}=\dfrac{\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}{\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)

Thấy tử và mẫu của phân số đều lớn hơn 0 => \(\dfrac{a^2+a+1}{a^2-a+1}>0\)

b)\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2a+1\right)+\left(c^2-2a+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (luôn đúng với mọi a,b,c)

Dấu = xra khi a=b=c=1

25 tháng 5 2021

b)

\(a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) ( Luôn đúng)

Dấu "=" xảy ra khi a=b=c=1

 

7 tháng 8 2016

help meeeeeeeeeeeeeeeeeeeeeeeeeeeeee

7 tháng 8 2016

1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc

                           = (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)

                           = (a+b+c)( a2+b2+c2-ab-bc-ca)

1) a³ + b³ + c³ - 3abc

=(a + b)(a² - ab + b²) + c³ - 3abc

=(a + b)(a² - ab + b²) + c(a² - ab + b²) - 2abc - ca² - cb²

=(a + b + c)(a² - ab + b²) - (abc + b²c + bc² + ac² + abc + c²a) + c³ + ac² + bc²

=(a + b = c)(a² - ab + b²) - (a + b + c)(bc + ca) + c²(a + b + c)

=(a + b + c)(a² + b² + c² - ab - bc - ca)

20 tháng 8 2021

2) \(\left(3a+2b-1\right)\left(a+5\right)-2b\left(a-2\right)=\left(3a+5\right)\left(a-3\right)+2\left(7b-10\right)\left(1\right)\)

\(\Leftrightarrow3a^2+15a+2ab+10b-a-5-2ab+4b=3a^2+14a+15+14b-10\)

\(\Leftrightarrow3a^2+14a+14b-5=3a^2+14a+14b-5\)( đúng)

\(\Rightarrow\left(1\right)\) đúng (đpcm)

9 tháng 7 2015

a) Vế trái = a2 - 3a + 2 + a2 - 7a + 12 - 2a2 - 5a + 34 = (a2 + a2 - 2a2) + (-3a - 7a - 5a) + 2 + 12 + 34 = -15a + 48 khác vê phải 

=> đề sai

b) Vế trái = a3 - b3 - (a3 + b3) = -2b3 = vế phải => đpcm

27 tháng 7 2023

1) \(\left(a+b\right)^2\)

\(=\left(a+b\right)\left(a+b\right)\)

\(=a^2+ab+ab+b^2\)

\(=a^2+2ab+b^2\left(dpcm\right)\)

2) \(\left(a-b\right)^3\)

\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)\)

\(=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)

\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)

\(=a^3-a^2b-2a^2+2ab^2+ab^2-b^3\)

\(=a^3-3a^2b+3ab^2-b^3\left(dpcm\right)\)

27 tháng 7 2023

`a)` 

`(a+b)^2`

`=(a+b)(a+b)`

`=a^2+ab+ab+b^2`

`=a^2+2ab+b^2`

`->` ĐPCM

`b)` `(a-b)^3`

`=(a-b)(a-b)(a-b)`

`=(a^2-2ab+b^2)(a-b)`

`=a^3-3a^2b+3ab^2-b^3`

`->` ĐPCM

24 tháng 7 2018

a)  \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a+b\right)\left(ac+bc+c^2\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

b)  \(VT=a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)