K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2021

Ta có \(b=x^2-2x+3=x^2-2x+1+2\)

\(=\left(x-1\right)^2+2>0\forall x\)

1 tháng 3 2018

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: 
a) 9x^2+12x-15 
=-(9x^2-12x+4+11) 
=-[(3x-2)^2+11] 
=-(3x-2)^2 - 11. 
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x. 
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x. 

b) -5 – (x-1)*(x+2) 
= -5-(x^2+x-2) 
=-5- (x^2+2x.1/2 +1/4 - 1/4-2) 
=-5-[(x-1/2)^2 -9/4] 
=-5-(x-1/2)^2 +9/4 
=-11/4 - (x-1/2)^2 
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x. 
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x. 

Bài 2) 
a) x^4+x^2+2 
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x 
suy ra x^4+x^2+2 >=2 
Hay x^4+x^2+2 luôn dương với mọi x. 

b) (x+3)*(x-11) + 2003 
= x^2-8x-33 +2003 
=x^2-8x+16b + 1954 
=(x-4)^2 + 1954 >=1954 
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

1 tháng 3 2018

bị ''rảnh'' ak ? 

tự hỏi r tự trả lời

27 tháng 4 2022

thu gọn rồi chứng minh nó > 0

\(A=25x^2-20x+7\)

\(\Rightarrow A=\left(5x\right)^2-2.2.5x+2^2-2^2+7\)

\(A=\left(5x-2\right)^2+3\ge3\)

Vậy \(A\ge3\)với mợi GT x

29 tháng 3 2020

cảm ơn các bạn nhiều

31 tháng 3 2020

\(-\frac{1}{4}x^2+x-2\)

\(=-\left(\frac{1}{4}x^2-2\cdot\frac{1}{2}x+1\right)-1\)

\(=-\left(\frac{1}{2}x-1\right)^2-1\)

Do \(\left(\frac{1}{2}x-1\right)^2\ge0\Rightarrow-\left(\frac{1}{2}x-1\right)^2\le0\Rightarrow-\left(\frac{1}{2}x-1\right)^2-1< 0\)

Vậy \(\left(-\frac{1}{4}\right)x^2+x-2\) luôn nhận giá trị âm với mọi giá trị của biến

ta có x2+x+1= x2+x+1+x-x= (x+1)2-x

Vì (x+1)2 \(\ge\)0   và (x+1)2>x 

nên x2+x+1 luôn luôn dương với mọi giá trị của x

29 tháng 3 2018

xét x>0 suy ra biểu thúc có gi trị dương

xét x,0

ta có \(x^2\)>0

suy ra \(x^2\)+x > 0

suy ra \(x^2\)+x+1 luôn luôn  dương với mọi gi trị của x

18 tháng 5 2021

\(x^4+2x^2+1=\left(x^2+1\right)^2\ge1>0\forall x\) ( đpcm ) 

18 tháng 5 2021

`x^4+2x^2+1`

`=(x^2)^2 + 2.x^2 .1 + 1^2`

`=(x^2+1)^2 > 0 forall x`.

14 tháng 4 2020

a)Thu gọn đơn thức:

B=4x2y2z(-3x2z)

B=16xyz(-6xz)

B=-96x2yz2

Hệ số:-96

Phần biến: x2yz2

b)Thay x=-2,y=-1,z=1 vào B=-96x2yz2

B=-96*(-2)2*(-1)*12

B=-96*4*(-1)*1

B=-96*(-4)

B=384

Câu c) hình như sai đề :DD

29 tháng 4 2020

Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm E, Trên tia đối của tia CB lấy điểm N sao cho EB = BC = CN

a)Chứng minh rằng tam giác AEN cân

b)kẻ BH vuông góc với AE (H thuộc cạnh AE)

kẻ CK vuông góc với AN (K thuộc cặp AN)

Chứng minh rằng tam giác HBE bằng tam giác KCN

   
8 tháng 4 2021

Ta xét tổng 3 đa thức trên:

\(A+B+C\)

\(=2x^2-5x-x^2+x+3+2x-2\)

\(=x^2-2x+1\)

\(=\left(x-1\right)^2\ge0\left(\forall x\right)\)

G/s A,B,C đều âm => A + B + C âm

=> vô lý

=> Trong 3 biểu thức A,B,C tồn tại ít nhất 1 biểu thức không âm

=> đpcm