Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử A chia hết cho 49 => A chia hết 7 => (n+5)(n-2)+14 chia hết 7 mà 14 chia hết 7=>(n+5)(n-2) chia hết 7 mà 7 là số nguyên tố =>n+5 chia hết 7 hoặc n-2 chia hết cho 7 mà (n+5)-(n-2)=7 =>(n+5)(n-2) chia hết cho 49 mà A chia hết cho 49=>14 chia hết cho 49 (vô lý) => giả sử sai => a ko chia hết cho 49
Vì \(n⋮n\) với mọi n nguyên nên \(n\left(5n+3\right)⋮n\)
Hay A chia hết cho n với mọi n thuộc Z.
Vì n \(\in\) Z => 5n+3 \(\in\) Z. Mà n \(⋮\) n
=> n( 5n+3 ) \(⋮\) n với mọi n \(\in\) Z
Vậy A \(⋮\) n với mọi n \(\in\) Z
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
Nếu n = 2k (k thuộc Z)
=> n.(5n+3)= 2k.(10k+3) \(⋮\)2( vì 2k \(⋮\)2)
Nếu n = 2k+1 (k thuộc Z)
=> n.(5n+3)= (2k+1).(10k+5+3)=(2k+1).(10k+8) \(⋮\)2( vì 10k+8 \(⋮\)2)
=> Với mọi n thuộc Z thì \(n.\left(5n+3\right)⋮2\)
Đặt A=n.(5n+3)
TH1: n là số chẵn => Đặt n=2k (k\(\in\)Z)
Khi đó: \(A=2.k.\left(5.2k+3\right)⋮2\)
TH2: n là số lẻ => Đặt n=2m+1
Khi đó: \(A=\left(2m+1\right)\left[5.\left(2m+1\right)+3\right]\)
\(A=\left(2m+1\right)\left(10m+5+3\right)\)
\(A=\left(2m+1\right)\left(10m+8\right)\)
\(A=\left(2m+1\right).2\left(5m+4\right)⋮2\)
Vậy: với mọi n\(\in Z\) thì n.(5n+3) luôn chia hết cho 2
a) n + 5 chia hết cho n - 2
=> ( n - 2 ) + 7 chia hết cho n - 2
=> 7 chia hết cho n - 2
=> n - 2 thuộc Ư(7) = { -7 ; -1 ; 1 ; 7 }
n-2 | -7 | -1 | 1 | 7 |
n | -5 | 1 | 3 | 10 |
Vậy n = { -5 ; 1 ; 3 ; 10 )
b) Gọi d là ƯCLN(7n + 10 ; 5n + 7)
\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)
\(\Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\)
\(\Rightarrow35n+50-35n-49⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
=> ƯCLN(7n + 10 ; 5n + 7) = 1
=> 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau với mọi n thuộc N ( đpcm )
Bài làm:
a) \(\frac{n+5}{n-2}=\frac{\left(n-2\right)+7}{n-2}=1+\frac{7}{n-2}\)
Để \(\left(n+5\right)⋮\left(n-2\right)\) thì \(\frac{7}{n-2}\inℤ\)
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow n\in\left\{-5;1;3;9\right\}\)
b) Gọi \(\left(7n+10;5n+7\right)=d\)
\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(7n+10\right)⋮d\\2\left(5n+7\right)⋮d\end{cases}}\)
\(\Rightarrow14n+20-\left(10n+14\right)⋮d\)
\(\Leftrightarrow4n+6⋮d\) , mà \(5n+7⋮d\)
\(\Rightarrow5n+7-\left(4n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\pm1\)
=> 7n+10 và 5n+7 nguyên tố cùng nhau
=> đpcm