K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

Dễ nhưng nhiều quá===>không làm

14 tháng 2 2016

giúp mình với ^^

18 tháng 2 2018

giả sử A chia hết cho 49 => A chia hết 7 => (n+5)(n-2)+14 chia hết 7 mà 14 chia hết 7=>(n+5)(n-2) chia hết 7 mà 7 là số nguyên tố =>n+5 chia hết 7 hoặc n-2 chia hết cho 7 mà (n+5)-(n-2)=7 =>(n+5)(n-2) chia hết cho 49 mà A chia hết cho 49=>14 chia hết cho 49 (vô lý) => giả sử sai => a ko chia hết cho 49

10 tháng 4 2017

\(n⋮n\) với mọi n nguyên nên \(n\left(5n+3\right)⋮n\)
Hay A chia hết cho n với mọi n thuộc Z.

10 tháng 4 2017

Vì n \(\in\) Z => 5n+3 \(\in\) Z. Mà n \(⋮\) n

=> n( 5n+3 ) \(⋮\) n với mọi n \(\in\) Z

Vậy A \(⋮\) n với mọi n \(\in\) Z

9 tháng 2 2018

a) (n mũ 2+n) chia hết cho 2 

=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2

9 tháng 2 2018

\(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm

19 tháng 2 2017

Nếu n = 2k (k thuộc Z)

=> n.(5n+3)= 2k.(10k+3) \(⋮\)2( vì 2k \(⋮\)2)

Nếu n = 2k+1 (k thuộc Z)

=> n.(5n+3)= (2k+1).(10k+5+3)=(2k+1).(10k+8) \(⋮\)2( vì 10k+8 \(⋮\)2)

=> Với mọi n thuộc Z thì \(n.\left(5n+3\right)⋮2\)

19 tháng 2 2017

Khánh Hoà nè

19 tháng 2 2017

Đặt A=n.(5n+3)

TH1: n là số chẵn => Đặt n=2k (k\(\in\)Z)

Khi đó: \(A=2.k.\left(5.2k+3\right)⋮2\)

TH2: n là số lẻ => Đặt n=2m+1

Khi đó: \(A=\left(2m+1\right)\left[5.\left(2m+1\right)+3\right]\)

\(A=\left(2m+1\right)\left(10m+5+3\right)\)

\(A=\left(2m+1\right)\left(10m+8\right)\)

\(A=\left(2m+1\right).2\left(5m+4\right)⋮2\)

Vậy: với mọi n\(\in Z\) thì n.(5n+3) luôn chia hết cho 2

12 tháng 8 2020

a) n + 5 chia hết cho n - 2

=> ( n - 2 ) + 7 chia hết cho n - 2

=> 7 chia hết cho n - 2

=> n - 2 thuộc Ư(7) = { -7 ; -1 ; 1 ; 7 }

n-2-7-117
n-51310

Vậy n = { -5 ; 1 ; 3 ; 10 )

b) Gọi d là ƯCLN(7n + 10 ; 5n + 7)

\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)

\(\Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\)

\(\Rightarrow35n+50-35n-49⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

=> ƯCLN(7n + 10 ; 5n + 7) = 1

=> 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau với mọi n thuộc N ( đpcm ) 

12 tháng 8 2020

Bài làm:

a) \(\frac{n+5}{n-2}=\frac{\left(n-2\right)+7}{n-2}=1+\frac{7}{n-2}\)

Để \(\left(n+5\right)⋮\left(n-2\right)\) thì \(\frac{7}{n-2}\inℤ\)

\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow n\in\left\{-5;1;3;9\right\}\)

b) Gọi \(\left(7n+10;5n+7\right)=d\)

\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2\left(7n+10\right)⋮d\\2\left(5n+7\right)⋮d\end{cases}}\)

\(\Rightarrow14n+20-\left(10n+14\right)⋮d\)

\(\Leftrightarrow4n+6⋮d\) , mà \(5n+7⋮d\)

\(\Rightarrow5n+7-\left(4n+6\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\pm1\)

=> 7n+10 và 5n+7 nguyên tố cùng nhau

=> đpcm

3 tháng 3 2020

xét n ⋮ 2 => n(5n + 3) ⋮ 2

xét n không chia hết cho 2 => n = 2k + 1

=> n(5n + 3) = (2k + 1)[5(2k + 1) + 3)

= (2k + 1)(10k + 8) 

= 2(5k + 4)(2k + 1) ⋮ 2

vậy với mọi n nguyên thì n(5n + 3) ⋮ 2

3 tháng 3 2020

Đặt  A = n . (5n + 3 )

TH1 : n là số chẵn 

\(\Rightarrow\)n = 2k ( k \(\in Z\))

Khi đó ta có :  A = 2k . (5 . 2k +3 ) \(⋮2\)

TH2 : n là số lẻ 

\(\Rightarrow\)n = 2b + 1

Khi đó ta có : A = (2b + 1) . [ 5 .(2b + 1 ) + 3 ]

                      A = (2b+1) . ( 10b + 5 + 3 )

                      A = (2b + 1) . (10b + 8)

                      A = (2b + 1 ) . 2 . (5b + 4) \(⋮2\)

Vậy với   mọi n thuộc Z ta luôn có n .  (5n + 3 ) \(⋮2\)\(\rightarrowĐPCM\)

#HOK TỐT #