Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{200}=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)\(\left(đpcm\right)\)
A = 1/101 + 1/102 + 1/103 + ... + 1/199 + 1/200
A = ( 1/101 + 1/102 + 1/103 + ... + 1/150) + ( 1/151 + 1/152 + 1/153 + ... + 1/200)
( 50 phân số) ( 50 phân số)
A < 1/150 x 50 + 1/200 x 50
A < 1/3 + 1/4
A < 7/12
Chứng tỏ A < 7/12
\(a,\) Ta có : \(\frac{1}{101}>\frac{1}{130};\frac{1}{102}>\frac{1}{301};\frac{1}{103}>\frac{1}{130};...;\frac{1}{129}>\frac{1}{130}\)
\(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{120}\left(a\right)\)
\(\Rightarrow A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+\dfrac{1}{177}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A>25.\dfrac{1}{125}+25.\dfrac{1}{150}+25.\dfrac{1}{175}+25.\dfrac{1}{200}\)
\(\Rightarrow A>\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\)
\(\Rightarrow A>\dfrac{168+140+120+105}{840}=\dfrac{533}{840}>\dfrac{5}{8}\left(\dfrac{533}{840}>\dfrac{525}{840}\right)\)
\(\Rightarrow A>\dfrac{5}{8}\left(1\right)\)
\(\left(a\right)\Rightarrow A=\left(\dfrac{1}{101}+...\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A< 20.\dfrac{1}{100}+20.\dfrac{1}{120}+20.\dfrac{1}{140}+20.\dfrac{1}{160}+20.\dfrac{1}{180}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{504+420+360+315+280}{2520}=\dfrac{1879}{2520}< \dfrac{3}{4}\left(\dfrac{1879}{2520}< \dfrac{1890}{2520}\right)\)
\(\Rightarrow A< \dfrac{3}{4}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{5}{8}< A< \dfrac{3}{4}\left(dpcm\right)\)
Tự chứng minh thì dần dần sẽ quen bạn nhé Chúc bạn may mắn thành công
Ta có \(A>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\)( 50 số hạng )
=> \(A>\frac{50}{150}=\frac{1}{3}\Rightarrow A>\frac{1}{3}\) (1)
\(A< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) ( 50 số hạng )
=> \(A< \frac{50}{100}=\frac{1}{2}\Rightarrow A< \frac{1}{2}\) (2)
Từ (1) và (2) => \(\frac{1}{3}< A< \frac{1}{2}\)(đpcm)
Ta thấy tổng trên có 50 số hạng .
Ta có:
1/101>1/150
1/102>1/150
...
1/149>1/150
1/150=1/150
=>1/101+1/102+...+1/149+1/150>1/150+1/150+...+1/150
---50 số hạng 1/150-------
=>1/101+1/102+...+1/149+1/150>1/150.50
=>1/101+1/102+...+1/149+1/150>50/150
=>1/101+1/102+...+1/149+1/150>1/3