Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
1/49 + 1 = 50/49
2/48 + 1 = 50/48
3/47 + 1 = 50/47
.
.
.
47/3 + 1 = 50/3
48/2 + 1 = 50/2
0 + 1 = 50/50
Cộng vế theo vế dãy đẳng thức trên ta được:
1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50/2 + 50/3 + 50/4 +........+ 50/49 + 50/50
⇒ 1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50 x (1/2 + 1/3 + 1/4 +........+ 1/49 + 1/50)
⇒ B = 50A
⇒ A/B = 1/50
Ta có:
1/49 + 1 = 50/49
2/48 + 1 = 50/48
3/47 + 1 = 50/47
.
.
.
47/3 + 1 = 50/3
48/2 + 1 = 50/2
0 + 1 = 50/50
Cộng vế theo vế dãy đẳng thức trên ta được:
1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50/2 + 50/3 + 50/4 +........+ 50/49 + 50/50
⇒ 1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50 x (1/2 + 1/3 + 1/4 +........+ 1/49 + 1/50)
⇒ B = 50A
⇒ A/B = 1/50
50A=\(\left(\frac{49}{1}+.......+\frac{1}{49}\right)49:2\)
50A= 1201
A=1201:50
A=\(\frac{1201}{10}\)=120.1
mà 120,1 ko phải số tự nhiên mà là số thập phân
=>A ko là số tự nhiên
50A=(\(\frac{49}{1}+....+\frac{1}{49}\))49:2
50A=1201
A=1201:50=\(\frac{1201}{100}\)=12,01
MÀ 12.01 ko phải là số tự nhiên mà là số thập phân =>A ko phải là số tự nhiên
A = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+\frac{50}{50}}\)
A = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\left(\frac{1}{49}+\frac{1}{48}+\frac{50}{47}+...+\frac{1}{2}+\frac{1}{50}\right).50}=\frac{1}{50}\)
\(A=\frac{T}{M}\)
\(M=\frac{1}{49}+1+\frac{2}{48}+1+\frac{3}{47}+1+.........+\frac{48}{2}+1+1\)
\(=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+.........+\frac{50}{2}+1\)
\(=50.\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+......+\frac{1}{2}+\frac{1}{50}\right)=50.T\)
\(A=\frac{T}{50T}=\frac{1}{50}\)
\(50\cdot A=\frac{49}{1}+\frac{48}{2}+\frac{47}{3}+...+\frac{2}{48}+\frac{1}{49}\)
\(50\cdot A=1+\left(\frac{48}{2}+1\right)+\left(\frac{47}{3}+1\right)+...+\left(\frac{2}{48}+1\right)+\left(\frac{1}{49}+1\right)\)
\(50\cdot A=\frac{50}{50}+\frac{50}{2}+\frac{50}{3}+...+\frac{50}{48}+\frac{50}{49}\)
\(50\cdot A=50\cdot\left(\frac{1}{50}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{48}+\frac{1}{49}\right)\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}\)
\(P=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)
\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{8}\right)-\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)
p=\(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+49\)
=\(\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(1+\frac{3}{47}\right)+...+\left(1+\frac{48}{2}\right)+\frac{50}{50}\)
=\(\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\)
=\(50\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)\)
p=50*S
\(\frac{S}{\text{p}}=\frac{1}{50}\)
vì là phân số nên không phải là số tự nhiên
theo mik là zậy