Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= (5^6+5^3)+(5^5+5^2)+(5^4+5)+(5^3+1)
= (5^3+1).(5^3+5^2+5+1)
= 126.(5^3+5^2+5+1) chia hết cho 126
k mk nha
\(S=5+5^2+5^3+5^4+...+5^{2004}\)
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)
\(S=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)
\(S=5.6+5^3.6+...+5^{2003}.6\)
\(S=6\left(5+5^3+...+5^{2003}\right)\) chia hết cho 6
S=5+52+53+54+55+...+52004
S=(5+54)+(52+55)+(53+56)+...+(52000+52004)
S=5x126+52x126+53x126+...+52000x126
⇒S chia hết cho 126
S=5+52+53+54+55+...+52004
có 65=13*5 mà tổng S chia hết cho 5 nha nên Cm S chia hết cho 13
tổng S có 2004 số số hạng được tách thành 2 phần: S=S1+S2
Với S1=5+53=130=65*2 nên S1 chia hết cho 65
S2=52+53+54+55+...+52004
(có 2002 số số hạng) mà 2002 chia hết cho 13 nên S2 chia hết cho 65
Vậy S chia hết cho 65
\(5^6+5^5+5^4+2.5^3+5^2+5+1\)
\(=\left(5^6+5^3\right)+\left(5^5+5^2\right)+\left(5^4+5\right)+\left(5^3+1\right)\)
\(=\left(5^3+1\right)\left(5^3+5^2+5+1\right)\)
\(=126\left(5^3+5^2+5+1\right)⋮126\)
\(\Rightarrow5^6+5^5+5^4+2.5^3+5^2+5+1⋮126\)
a/A= \(5^6-10^4=5^4.\left(5^2-2^4\right)=5^4.\left(25-16\right)=5^4.9\)chia hết cho 9
b/\(F=5+5^2+5^3+5^4+5^5+5^6=\left(5+5^2+5^3\right).\left(5^4+5^5+5^6\right)=\left(5+25+125\right)\left(5^4+5^5+5^6\right)=155.\left(5^4+5^5+5^6\right)\)
vì 155 chia hết cho 31 đa thức F chia hết cho 31
ta đặc : \(5^6+5^5+5^4+5^3+5^2+5+1=A\)
vậy ta có : \(A=5^6+5^5+5^4+5^3+5^2+5+1\)
\(\Rightarrow5A=5\left(5^6+5^5+5^4+5^3+5^2+5+1\right)\)
\(5A=5^7+5^6+5^5+5^4+5^3+5^2+5\)
\(\Rightarrow5A-A=4A=\left(5^7+5^6+5^5+5^4+5^3+5^2+5\right)-\left(5^6+5^5+5^4+5^3+5^2+5+1\right)\)
\(4A=5^7-1\Rightarrow A=\dfrac{5^7-1}{4}=19531⋮̸126\)
\(\Rightarrow\) đề sai
a, Ta có \(5^6 - 10^4 = 5^6-(2.5)^4 =5^6 -2^4.5^4 =5^4 (5^2 -2^4) =5^4 ( 25 -16) =5^4 . 9 \)
\(5^6+5^5+5^4+5^3+5^2+5+1\)
\(=19531\)\(⋮̸\) \(126\)
Vậy \(5^6+5^5+5^4+5^3+5^2+5+1\) không chia hết cho \(126\)