Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
55n+1+55n=55n.(55+1)
=55n.56 chia hết cho 56
\(\Rightarrow\) 55n+1+55n:56
Vậy ...
các bạn tự viết câu kết luận nha
Hoàng Việt Bách yêu cầu bn làm 1 câu hỏi khác theo yêu cầu mk ns trog phần tin nhắn nha !!! ! check tin nhắn bn ey !
\(55^{n+1}-55^n\)
\(=55^n.55-55^n\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Ta có: \(54⋮54\)
\(\Rightarrow55^n.54⋮54\)
\(\Rightarrow55^{n+1}-55^n⋮54\)
đpcm
\(\left(5n+2\right)^2-4\)
\(=\left(5n+2\right)^2+2^2\)
\(=\left(5n+2+2\right).\left(5n+2-2\right)\)
\(=\left(5n+4\right).\left(5n\right)\)
Vậy \(\left(5n+2\right)^2-4\)chia hết cho 5 với mọi số nguyên n
1.=(x-2)(x 2+2x+7)+2(x-2)(x+2)-5(x-2) = 0
=>(x-2)(x 2+2x+7+2x+4-5) = 0
=>(x-2)(x 2+4x+6) = 0
Mà x 2+4x+6 (E Z)
=> x 2+4x+6 > 0
Vậy (x-2)=0 => x = 2
a/A= \(5^6-10^4=5^4.\left(5^2-2^4\right)=5^4.\left(25-16\right)=5^4.9\)chia hết cho 9
b/\(F=5+5^2+5^3+5^4+5^5+5^6=\left(5+5^2+5^3\right).\left(5^4+5^5+5^6\right)=\left(5+25+125\right)\left(5^4+5^5+5^6\right)=155.\left(5^4+5^5+5^6\right)\)
vì 155 chia hết cho 31 đa thức F chia hết cho 31
Giải
55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
Giải:
Ta có ; 55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
a, 472014 - 472013 = 472013 . (47 - 1) = 472013 . 46 = 472013 . 2 . 23 ⋮ 23
Vậy 472014 - 472013 ⋮ 23
b, 542014 + 542015 = 542014 . (1 + 54) = 542014 . 55 = 542014 . 5 .11 ⋮ 11
Vậy 542014 + 542015 ⋮ 11
c, 273 + 95 = (33)3 + (32)5 = 39 + 310 = 39 . (1 + 3) = 39 . 4 ⋮ 4
Vậy 273 + 95 ⋮ 4
d, a(2a - 3) - 2a(a + 1) = 2a2 - 3a - 2a2 - 2a = -5a = (-1) . 5 . a ⋮ 5
Vậy a(2a - 3) - 2a(a + 1) ⋮ 5 với mọi a nguyên
Bài làm :
a) 472014 - 472013 = 472013 . (47 - 1) = 472013 . 46 = 472013 . 2 . 23 ⋮ 23
=> Điều phải chứng minh
b) 542014 + 542015 = 542014 . (1 + 54) = 542014 . 55 = 542014 . 5 .11 ⋮ 11
=> Điều phải chứng minh
c) 273 + 95 = (33)3 + (32)5 = 39 + 310 = 39 . (1 + 3) = 39 . 4 ⋮ 4
=> Điều phải chứng minh
d) a(2a - 3) - 2a(a + 1) = 2a2 - 3a - 2a2 - 2a = -5a = (-1) . 5 . a ⋮ 5
=> Điều phải chứng minh
\(55^{n+1}-55^n\)
\(=55^n.55-55^n.1\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Vì có 54 trong tích
=> 55n . 54 chia hết cho 54
=> Điều phải chứng minh
a, Ta có \(5^6 - 10^4 = 5^6-(2.5)^4 =5^6 -2^4.5^4 =5^4 (5^2 -2^4) =5^4 ( 25 -16) =5^4 . 9 \)