K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

Gọi d = ƯCLN(n + 5; n + 6) (d \(\in\) N*)

\(\Rightarrow\begin{cases}n+5⋮d\\n+6⋮d\end{cases}\)\(\Rightarrow\left(n+6\right)-\left(n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

Mà \(d\in\) N* => d = 1

=> ƯCLN(n + 5; n + 6) = 1

=> n + 5 và n + 6 là 2 số nguyên tố cùng nhau (đpcm)

8 tháng 10 2016

những câu còn lại lm tương tự, câu nào ko bik lm thì ib vs t, ok

3 tháng 11 2019

a)Gọi 2 số lẻ liên tiếp là:a;a+1 và (a,a+1) là d.

\(\Rightarrow\)\(\hept{\begin{cases}a⋮d\\a+1⋮d\end{cases}}\)

\(\Rightarrow\)a+1-a\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)d=1

Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.

b)Gọi (4n+5,6n+7) là d.

\(\Rightarrow\)\(\hept{\begin{cases}4n+5⋮d\\6n+7⋮d\end{cases}}\)

\(\Rightarrow\)6(4n+5)-4(6n+7)\(⋮\)d

\(\Rightarrow\)24n+30-24n+28\(⋮\)d

\(\Rightarrow\)2\(⋮\)d

\(\Rightarrow\)d\(\in\){1;2}

Mà 4n+5 là số lẻ

\(\Rightarrow\)d=1

\(\Rightarrow\)4n+5 và 6n+7 là 2 số nguyên tố cùng nhau.

Vậy 4n+5 và 6n+7 là 2 số nguyên tố cùng nhau.

3 tháng 11 2019

Gọi 2 số lẻ liên tiếp là a;a+2 (mà a € N ) 

Giả sử:(a;a+2)=d

=>a chia hết cho d

a+2 chia hết cho d

(a+2)-a chia hết cho d

=>2 chia hết cho d

Vậy d=1 hoặc d=2

Mà a và a+2 là 2 số lẻ=> d  khác 2=> d=1

Vậy 2 số lẻ liên tiếp là 2 số nguyên tô cùng nhau

NM
23 tháng 11 2020

gọi a là ước chung lớn nhất của 2n+1 và 3n+2

do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1

hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.

b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5

do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1

hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau

22 tháng 11 2015

bạn vào câu hỏi tương tự nha

22 tháng 11 2015

Gọi ƯCLN của 2n+3 và 4n+8 là d (d thuộc N*)

Ta có                     2n+ 3  chia hết cho d

                        4n + 6 chia hết cho d 

                     4n + 8 chia hết cho d

Vậy ( 4n+8 ) - (4n+6) chai hết cho d

      2 chia hết cho d

Ư(2) ={ 1;2}  mà d lẻ => d= 1

Vậy 2n+ 3 và 4n+8 là 2 số nguyên tố cùng nhau

các ý khác cũng tương tự

21 tháng 12 2023

Gọi ước chung của 2n + 3 và 4n + 8 là d

Ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)

           \(\left\{{}\begin{matrix}2\left(2n+3\right)⋮d\\4n+8⋮d\end{matrix}\right.\)

            \(\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

             4n + 6 - 4n - 8 ⋮ d

                                  2 ⋮ d

             d \(\in\) Ư(2) = {1; 2)

Nếu d =  2 ⇒ 2n + 3 ⋮ 2 ⇒ 3 ⋮ 2 (vô lí loại)

Vậy d = 1; hay 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau (đpcm)

19 tháng 8 2023

Gọi d là ƯCLN(4n + 5; 2n + 2)

⇒ (4n + 5) ⋮ d

(2n + 2) ⋮ d ⇒ 2(2n + 2) ⋮ d ⇒ (4n + 4) ⋮ d

⇒ [(4n + 5) - (4n + 4)] ⋮ d

⇒ (4n + 5 - 4n - 4) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy 4n + 5 và 2n + 2 là hai số nguyên tố cùng nhau

19 tháng 8 2023

Gọi ước chung lớn nhất của 4n + 5 và 2n + 2 là: d

Ta có:  4n + 5 ⋮ d

            2n + 2 ⋮ d

       ⇒ 2.(2n+ 2) ⋮ d ⇒ 4n + 4  ⋮ d

        ⇒  4n + 5 - (4n + 4) ⋮ d

             4n + 5  - 4n - 4 ⋮ d 

                                 1 ⋮ d ⇒ d = 1

Ước chung lớn nhất của 4n + 5 và 2n + 2 là 1

Hay 4n + 5 và 2n + 2 là hai số nguyên tố cùng nhau

 

 

 

19 tháng 11 2015

Tên đẹp thật lừa đó

19 tháng 11 2015

Ta gọi d là ước chung lớn nhất của 4n + 3 và 2n + 3 . Theo bài ra, ta có :

4n + 3 chia hết cho d

2n + 3 chia hết cho d

=> 4n + 3 chia hết cho d

     4n + 6 chia hết cho d

=> (4n + 6) - (4n + 3) chia hết cho d

=> 3 chia hết cho d

=> d thuộc ước của 3

=> Ư(3)={1 ; 3}

Nếu 4n + 3 và 2n + 3 chia hết cho 3 thì nó ko là 2 số nguyên tố cùng nhau.

=> d = 1 ( ĐPCM )

TICK mình nhé !!!