Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$n^3-3n^2-3n-1=n(n^2+n-1)-4(n^2+n-1)+2n-5$
$=(n-4)(n^2+n-1)+2n-5$
Để $n^3-3n^2-3n-1\vdots n^2+n-1$ thì:
$2n-5\vdots n^2+n-1(1)$
$\Rightarrow n(2n-5)\vdots n^2+n-1$
$\Rightarrow 2(n^2+n-1)-7n+2\vdots n^2+n-1$
$\Rightarrow 7n-2\vdots n^2+n-1(2)$
Từ $(1); (2)\Rightarrow 7n-2-3(2n-5)\vdots n^2+n-1$
$\Rightarrow n+13\vdots n^2+n-1(3)$
Từ $(1); (3)\Rightarrow 2(n+13)-(2n-5)\vdots n^2+n-1$
$\Rightarrow 31\vdots n^2+n-1$
$\Rightarrow n^2+n-1\in\left\{\pm 1; \pm 31\right\}$
Đến đây bạn xét các TH để tìm $n$ thôi.
\(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
a) Ta có: (n2 + n - 1)2 - 1
= ( n2 + n - 1 + 1)(n2 + n - 1 - 1)
= (n2 + n)(n2 + n - 2)
= n(n + 1)(n2 + 2n - n - 2)
= n(n+ 1)[n(n + 2) - (n + 2)]
= n(n + 1)(n - 1)(n + 2)
Do n(n + 1)(n - 1)(n + 2) là tích của 4 số nguyên liên tiếp
nên 1 thừa số chia hết cho 2
1 thừa số chia hết cho 3
1 thừa số chia hết cho 4
mà (2, 3, 4) = 1
=> n(n + 1)(n - 1)(n + 2) \(⋮\)2.3.4 = 24
=> (n2 + n - 1)2 - 1 \(⋮\)24 \(\forall\)n \(\in\)Z
b) Do n chẵn => n có dạng 2k (k \(\in\)Z)
Khi đó, ta có: n3 + 6n2 + 8n
= (2k)3 + 6.(2k)2 + 8.2k
= 8k3 + 24k2 + 16k
= 8k(k2 + 3k + 2)
= 8k(k2 + 2k + k + 2)
= 8k[k(k + 2) + (k + 2)]
= 8k(k + 1)(k + 2)
Do k(k + 1)(k + 2) là tích của 3 số nguyên liên tiếp
nên 1 thừa số chia hết cho 2
1 thừa số chia hết cho 3
=> k(k + 1)(k + 2) \(⋮\)2.3 = 6
=> 8k(k + 1)(k + 2) \(⋮\)8.6 = 48
Vậy n3 + 6n2 + 8n \(⋮\)48 \(\forall\)n là số chẵn
Lời giải:
a)
\(2(x+3)-x^2-3x=0\)
\(\Leftrightarrow 2(x+3)-(x^2+3x)=0\)
\(\Leftrightarrow 2(x+3)-x(x+3)=0\Leftrightarrow (2-x)(x+3)=0\)
\(\Rightarrow \left[\begin{matrix} 2-x=0\\ x+3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)
b)
Theo định lý Bê-du về phép chia đa thức thì để đa thức đã cho chia hết cho $3x-1$ thì:
\(f(\frac{1}{3})=3.(\frac{1}{3})^3+2(\frac{1}{3})^2-7.\frac{1}{3}+a=0\)
\(\Leftrightarrow -2+a=0\Leftrightarrow a=2\)
c) Ta có:
\(2n^2+3n+3\vdots 2n-1\)
\(\Leftrightarrow 2n^2-n+4n+3\vdots 2n-1\)
\(\Leftrightarrow n(2n-1)+(4n-2)+5\vdots 2n-1\)
\(\Leftrightarrow n(2n-1)+2(2n-1)+5\vdots 2n-1\)
\(\Leftrightarrow 5\vdots 2n-1\Rightarrow 2n-1\in \text{Ư}(5)\)
\(\Rightarrow 2n-1\in\left\{\pm 1; \pm 5\right\}\Rightarrow n\in\left\{0; 1; 3; -2\right\}\)
Vậy.................
a)
a) n2−3n+5 : n−2 = n - 1 (R=3) . Để phép chia hết nên suy ra: n-1 thuộc Ư(3) . Suy ra : n = { 4 ; -2 ; 0 ; 2 }
ai giup vs
Cho x,y là hai số thoả mãn 2(x2+y2)=(x-y)2 Khi đó ta có hệ thức biểu diễn mối quan hệ giữa x,y là x=....y
giải chi tiết nha